已找到以下 10000 条记录
  • 深度学习之“深度”

            深度学习是机器学习的一个分支领域:它是从数据中学习表示的一种新方法,强调从连续的层(layer)中进行学习,这些层对应于越来越有意义的表示。“深度学习”中的“深度”指的并不是利用这种方法所获取的更深层次的理解,而是指一系列连续的表示层。数据模型中包含多少层,这被称

    作者: ypr189
    1571
    1
  • 云计算学习入门

    场景下使用对象存储服务。 立即学习 块存储服务EVS:云上坚实的数据底座 通过本课程的学习,用户将对云硬盘形成系统的理解,掌握云硬盘的相关知识及如何在对应的场景下使用云硬盘。 课程目标 通过学习本课程,对云硬盘有系统的了解,并掌握相关操作。 立即学习 内容分发网络CDN:提升网络响应速度

  • 物联网学习入门

    物联网学习入门 课程学习,动手实验,技能认证,全面掌握物联网前沿技术 物联网知识图谱 在线课程 01 初学入门课程、开发者课程、合作伙伴课程 初学入门课程、开发者课程、合作伙伴课程 动手实验 02 精心设计云上实验,深度体验云服务 精心设计云上实验,深度体验云服务 初学入门 初学入门

  • 深度学习GRU

    Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。

    作者: 我的老天鹅
    1261
    13
  • 分享深度学习发展的学习范式——混合学习

     这种学习范式试图去跨越监督学习与无监督学习边界。由于标签数据的匮乏和收集有标注数据集的高昂成本,它经常被用于商业环境中。从本质上讲,混合学习是这个问题的答案。我们如何才能使用监督学习方法来解决或者链接无监督学习问题?例如这样一个例子,半监督学习在机器学习领域正日益流行,因为它能

    作者: 初学者7000
    740
    1
  • 分享深度学习发展的学习范式——混合学习

        这种学习范式试图去跨越监督学习与无监督学习边界。由于标签数据的匮乏和收集有标注数据集的高昂成本,它经常被用于商业环境中。从本质上讲,混合学习是这个问题的答案。我们如何才能使用监督学习方法来解决或者链接无监督学习问题?例如这样一个例子,半监督学习在机器学习领域正日益流行,因

    作者: 初学者7000
    829
    3
  • 学习深度学习是否要先学习机器学习

    学习深度学习是否要先学习完机器学习,对于学习顺序不太了解

    作者: 飞奔的野马
    5964
    23
  • 学习项目 - 教育

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

  • 深度学习之机器学习基础

    深度学习是机器学习的一个特定分支。要想学好深度学习,必须对机器学习的基本原理有深刻的理解。本章将探讨贯穿本书其余部分的一些机器学习重要原理。我们建议新手读者或是希望更全面了解的读者参考一些更全面覆盖基础知识的机器学习参考书,例如Murphy (2012) 或者Bishop (20

    作者: 小强鼓掌
    838
    2
  • 适合新手的深度学习综述(4)--深度学习方法

    本文转载自机器之心。深度神经网络在监督学习中取得了巨大的成功。此外,深度学习模型在无监督、混合和强化学习方面也非常成功。4.1 深度监督学习监督学习应用在当数据标记、分类器分类或数值预测的情况。LeCun 等人 (2015) 对监督学习方法以及深层结构的形成给出了一个精简的解释。Deng

    作者: @Wu
    176
    1
  • 联邦学习课程学习路径

    效率的机器学习。本学习路径将从联邦学习系统以及分布式算法基础理论讲起,介绍联邦学习的常见分类,以及联邦学习的典型应用。 第一阶段:联邦学习系统基础及进阶 第二阶段:联邦学习分类 第三阶段:纵向联邦学习 第四阶段:联邦学习应用 第一阶段:联邦学习系统基础及进阶 联邦学习(Federated

  • 自动学习

    自动学习 使用自动学习0代码开发图像分类AI模型 父主题: 使用场景

  • 分享深度学习发展的混合学习

      这种学习范式试图跨越监督学习和非监督学习之间的界限。由于缺少标签数据和收集标签数据集的高成本,它通常用于业务环境中。从本质上讲,混合学习就是这个问题的答案。我们如何使用监督学习方法来解决或联系非监督学习问题?例如,半监督学习在机器学习领域正变得越来越流行,因为它可以很好地处理

    作者: 初学者7000
    929
    1
  • 学习心得

    随着信息技术的高速发展并迅速渗透到社会生活的各个方面,计算机日益成为人们学习、工作、生活不可缺少的基本工具,再过不了几年,不会使用计算机,就会象不识字一样使人举步维艰,计算机学习心得体会。进入大学,计算机无时无刻在伴随着我们,给我们在学习的生活增添了乐趣。然而这个学期将是展现自我能力的一个好时机

    作者: yd_292853975
    140
    0
  • 深度学习随机取样、学习

    4-8096个样本。学习率从梯度下降算法的角度来说,通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可

    作者: 运气男孩
    1443
    5
  • 资料学习 - 开源深度学习框架tinygrad

    深度学习时代,谷歌、Facebook、百度等科技巨头开源了多款框架来帮助开发者更轻松地学习、构建和训练不同类型的神经网络。而这些大公司也花费了很大的精力来维护 TensorFlow、PyTorch 这样庞大的深度学习框架。除了这类主流框架之外,开发者们也会开源一些小而精的框架或者库。比如今年

    作者: RabbitCloud
    729
    5
  • 深度学习之基于梯度的学习

    复杂一些,但仍然可以很高效而精确地实现。会介绍如何用反向传播算法以及它的现代扩展算法来求得梯度。       和其他的机器学习模型一样,为了使用基于梯度的学习方法我们必须选择一个代价函数,并且我们必须选择如何表示模型的输出。现在,我们重温这些设计上的考虑,并且特别强调神经网络的情景。

    作者: 小强鼓掌
    830
    2
  • 自动学习

    具备AI开发能力。 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部

  • HCIA-Cloud Service3.5-华为云开发者学堂

    库、EI、CDN、安全等 认证流程 收起 展开 学习培训 收起 展开 您可以通过在线课程的学习,随时随地掌握基础知识,了解华为云实践应用 在线学习 收起 展开 在线实验 收起 展开 完成理论知识学习后结合实验手册在线实操,巩固学习 下载手册 收起 展开 模拟测试 收起 展开 通过模拟试题进行自我检测,了解考试题型

  • 华为云《大数据全栈成长计划》学习感受和心得体会

    个阶段学习都是以单选、判断和多选题等客观题目进行考核的。仅从视频学习和客观题考核方式看,华为云ClassRoom和华为云学院的在线学习方式很类似。       华为云《大数据全栈成长计划》共分三个阶段的学习,第一阶段的学习主要是MySQL的学习,涉及

    作者: 爱学习的多宝
    发表时间: 2021-05-04 12:37:01
    2712
    0