内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 学习笔记|EM算法的收敛

    EM算法提供一种近似计算含有隐变量概率模型的极大似然估计的方法。EM算法的最大优点是简单性和普适性。我们很自然地要问:EM算法得到的估计序列是否收敛?如果收敛,是否收敛到全局最大值或局部极大值?下面给出关于EM算法收敛性的两个定理。 证明: 由于 取对数有 (可参见学习笔记|EM算法

    作者: darkpard
    发表时间: 2021-12-22 12:03:25
    853
    0
  • 深度学习随机取样、学习

    下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误差和作为成本函数时,随着数据量的增多,学习率应该被设置为相应更小的值(从梯度下降算法的原理可以分析得出)。另一种方

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误差和作为成本函数时,随着数据量的增多,学习率应该被设置为相应更小的值(从梯度下降算法的原理可以分析得出)。另一种方

    作者: 运气男孩
    1444
    5
  • 使用Python实现深度学习模型:语音合成与语音转换

    aths) # 训练模型 tacotron2_model.fit(train_generator, epochs=10) 步骤五:构建语音转换模型 我们将使用WaveGlow模型来构建语音转换系统。以下是模型定义的代码: # 构建WaveGlow模型 def build_w

    作者: Echo_Wish
    发表时间: 2024-07-19 08:21:13
    101
    0
  • 注意力机制如何提升深度学习模型在NLP任务上的表现

    任务。 6. 总结 注意力机制的引入为深度学习模型在 NLP 任务上的表现带来了革命性的提升。通过赋予模型选择性关注能力,注意力机制使得模型能够更好地捕捉长距离依赖关系,增强模型的可解释性,并显著提高训练效率。以 Transformer 为代表的模型,通过广泛应用自注意力机制,彻底改变了

    作者: wljslmz
    发表时间: 2024-08-15 23:28:22
    89
    0
  • 数学建模学习(68):机器学习训练模型的保存与模型使用

    训练的机器学习模型。 Pickle 是一个通用的对象序列化模块,可用于序列化和反序列化对象。虽然它最常与保存和重新加载经过训练的机器学习模型相关联,但它实际上可以用于任何类型的对象。以下是如何使用 Pickle 将训练好的模型保存到文件并重新加载以获取预测。 模型保存 接着

    作者: 川川菜鸟
    发表时间: 2022-05-18 16:01:31
    292
    0
  • 深度学习应用实战案例-员工流失预测模型(Python源代码)

    未来的员工离职状况,从而进一步减少员工流失。 那么,哪些因素最容易导致员工离职呢? 这次我们用数据说话, 教你如何用Python写一个员工流失预测模型。 01 数据理解 我们分析了kaggle平台分享的员工离职相关的数据集,共有10个字段14999条记

    作者: 格图洛书
    发表时间: 2021-11-18 17:04:55
    1010
    0
  • 深度学习

    全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的,深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics)中,20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到

    作者: QGS
    965
    4
  • 深度学习之机器学习基础

    类提供一些简单的机器学习算法作为示例。大部分深度学习算法都基于随机梯度下降求解。我们将介绍如何组合不同的算法部分,例如优化算法、代价函数、模型和数据集,来建立一个机器学习算法。我们会介绍一些限制传统机器学习泛化能力的因素。这些挑战促进了解决这些问题的深度学习算法的发展。

    作者: 小强鼓掌
    840
    2
  • 深度学习学习 XOR

    们得到 w = 0 以及 b = 12。线性模型仅仅是在任意一点都输出 0.5。为什么会发生这种事?演示了线性模型为什么不能用来表示 XOR 函数。解决这个问题的其中一种方法是使用一个模型学习一个不同的特征空间,在这个空间上线性模型能够表示这个解。       具体来说,我们这

    作者: 小强鼓掌
    951
    3
  • 使用Python实现深度学习模型:自监督学习与对抗性训练

    深度学习中,自监督学习和对抗性训练是两种强大的技术。自监督学习通过设计预任务来生成伪标签,减少对标注数据的依赖;对抗性训练通过生成对抗样本,提高模型的鲁棒性。本文将详细讲解如何使用Python实现自监督学习与对抗性训练,包括概念介绍、代码实现和示例应用。 目录 自监督学习简介

    作者: Echo_Wish
    发表时间: 2024-07-01 19:38:27
    7
    0
  • (Moxing篇一)自研深度学习MoXingAPI使模型训练再次升级

    n><align=left>华为云深度学习的高效性是通过混合并行、梯度压缩、卷积加速、EASGD等技术加快模型训练速度;内置模型压缩能力,可极大降低模型大小成本。以下是基于华为云深度学习服务的实验数据。</align><align=left><b> </b>18816</alig

    作者: freeborn0601
    18435
    5
  • 浅谈深度学习

    处理、语音识别、机器人控制等。在这些应用中,深度学习模型可以自动从数据中学习模式,并根据这些模式进行预测和分类。由于其高效性和准确性,深度学习技术正在成为越来越多领域的主流技术。然而,深度学习技术也存在一些挑战和问题。例如,深度学习模型的训练需要大量的数据和计算资源,而且通常需要

    作者: 运气男孩
    24
    3
  • 深度学习之Bagging学习

    回想一下Bagging学习,我们定义 k 个不同的模型,从训练集有替换采样构造k 个不同的数据集,然后在训练集 i 上训练模型 i。Dropout的目标是在指数级数量的神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量的学习算法和较小的步长,如梯

    作者: 小强鼓掌
    1254
    2
  • modelarts的学习率适中和过大是如何判断的呢?

    modelarts的学习率适中和过大是如何判断的呢?是不同的项目的 判断标准不一样的吗? 还是有一个通用的标准的呢? 这个对我们最后训练得到的模型有什么影响的吗?比如     学习力               相对应有什么的模型影响的不?     适中     过大    有过小不?  

    作者: andyleung
    1155
    2
  • 深度学习应用开发》学习笔记-13

    y然后定义模型函数,这个函数有3个参数,1个就是上面说的x,还有2个是参数,分别是w和b,就是2个参数斜率和位移而上面的2个参数,要用tf.Variable来声明来创建变量,它是会变的,在训练中学习到的,所以给它的初值是多少是无所谓的然后就是怎么样来训练模型了训练模型就是一个不断

    作者: 黄生
    457
    0
  • 深度学习之推断

    在Bagging的情况下,每一个模型在其相应训练集上训练到收敛。在Dropout的情况下,通常大部分模型都没有显式地被训练,因为通常父神经网络会很大,以致于到宇宙毁灭都不可能采样完所有的子网络。取而代之的是,在单个步骤中我们训练一小部分的子网络,参数共享会使得剩余的子网络也能有好

    作者: 小强鼓掌
    426
    4
  • 【点云处理】基于深度学习模型的不同处理方式

    在点云数据上应用深度学习模型(点云法)。 ​ &nbsp;一、点云数据特点 点云数据是在欧式空间下的点的一个子集,它具有以下三个特征:无序、点与点之间的空间关系、空间转换不变性。 1.1 无序 点云数据是一个集合,对数据的顺序是不敏感的。这使得处理点云数据的模型需要对数据的不同排列保持不变性。

    作者: 一颗小树x
    发表时间: 2021-08-25 15:53:11
    3055
    0
  • 深度学习前景

    纪80年代到90年代深度学习表现为联结主义(connectionism),直到2006年,才真正以深度学习之名复兴。图1.7给出了定量的展示。我们今天知道的一些最早的学习算法,是旨在模拟生物学习的计算模型,即大脑怎样学习或为什么能学习模型。其结果是深度学习以人工神经网络(artificialneural

    作者: G-washington
    1665
    1
  • 使用Python实现深度学习模型:智能物流与供应链管理

    介绍 在现代物流与供应链管理中,深度学习技术可以帮助优化运输路线、预测需求、管理库存等。本文将介绍如何使用Python和深度学习库TensorFlow与Keras来构建一个简单的预测模型。 环境准备 首先,我们需要安装必要的Python库: pip install tensorflow

    作者: Echo_Wish
    发表时间: 2024-08-01 08:21:36
    70
    0