已找到以下 10000 条记录
  • 使用Python实现深度学习模型:智能植物生长监测与优化

    详细介绍如何使用Python构建一个智能植物生长监测与优化的深度学习模型,并提供相关代码示例,帮助读者理解和应用这一技术。 1. 项目概述 本项目旨在通过深度学习技术,实现对植物生长的实时监测和优化。具体步骤包括: 数据准备 数据预处理 模型构建 模型训练 模型评估

    作者: Echo_Wish
    发表时间: 2024-11-05 08:34:29
    140
    0
  • 机器学习4-模型迭代

    新的参数。这种学习过程会持续迭代,直到该算法发现损失已经降到最低,此时得到一个较好的模型,保存此时的模型参数。 通常,可以不断迭代,直到总体损失不再变化或变化极其缓慢为止,此时模型已经收敛。   关键词(训练、收敛、损失) 训练(training)构建模型的理想参数的过程。

    作者: 一颗小树x
    发表时间: 2021-06-18 13:25:34
    2398
    0
  • Python中实现多层感知机(MLP)的深度学习模型

    深度学习已经成为机器学习领域的一个热门话题,而多层感知机(MLP)是最基础的深度学习模型之一。在这篇教程中,我将向你展示如何使用Python来实现一个简单的MLP模型。 什么是多层感知机(MLP)? 多层感知机(MLP)是一种前馈神经网络,它包含一个输入层、一个或多个隐藏层以及

    作者: Echo_Wish
    发表时间: 2024-04-27 10:10:48
    55
    0
  • 深度学习随机取样、学习

    下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误差和作为成本函数时,随着数据量的增多,学习率应该被设置为相应更小的值(从梯度下降算法的原理可以分析得出)。另一种方

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误差和作为成本函数时,随着数据量的增多,学习率应该被设置为相应更小的值(从梯度下降算法的原理可以分析得出)。另一种方

    作者: 运气男孩
    1444
    5
  • 使用Python实现深度学习模型:智能医疗影像识别与诊断

    介绍 智能医疗影像识别与诊断是现代医疗技术的重要应用,通过深度学习模型,可以自动分析和识别医疗影像,提高诊断的准确性和效率。本文将介绍如何使用Python和深度学习技术来实现智能医疗影像识别与诊断。 环境准备 首先,我们需要安装一些必要的Python库: pip install

    作者: Echo_Wish
    发表时间: 2024-08-19 08:18:11
    5
    0
  • 使用Python实现深度学习模型:智能垃圾分类与回收系统

    介绍 智能垃圾分类与回收系统通过深度学习技术,可以自动识别和分类不同类型的垃圾,提高垃圾回收效率,减少环境污染。本文将介绍如何使用Python和深度学习技术来实现智能垃圾分类与回收系统。 环境准备 首先,我们需要安装一些必要的Python库: pip install pandas

    作者: Echo_Wish
    发表时间: 2024-08-20 08:22:18
    121
    0
  • 周志华:深度学习模型深度森林”,有望打破神经网络垄断

    现在不知道森林模型能走多远,但以前我们都只知道深度学习就是深度神经网络,现在知道还可以有别的东西,这只是一个开始 “。深度学习理论研究存在大量空白“近几年,深度学习非常成功,但反思一下主要是在应用上的成功,深度学习在理论方面其实还有大量的空白,目前关于深度学习的理论,我们还处在

    作者: HWCloudAI
    发表时间: 2019-09-04 09:17:43
    6674
    0
  • 使用Python实现深度学习模型:智能音乐创作与生成

    在人工智能的浪潮中,智能音乐创作与生成成为了一个令人兴奋的领域。通过深度学习技术,我们可以训练模型来自动生成音乐,甚至模仿特定风格的作曲家。本文将详细介绍如何使用Python实现一个智能音乐创作与生成系统,确保内容通俗易懂,并配以代码示例和必要的图片说明。 一、准备工作 在开始之前,我们需要准备以下工具和材料:

    作者: Echo_Wish
    发表时间: 2024-09-23 08:33:52
    73
    0
  • EI智能数据湖培训认证

    认证亮点 课程覆盖4大热门EI服务 DWS MRS DAYU DLI DWS MRS DAYU DLI 学练考证一站式学习 课程学习 云端实验 考试认证 课程学习 云端实验 考试认证 进阶式课程设计 涵盖中级-高级-专家进阶内容 涵盖中级-高级-专家进阶内容 认证步骤 学-在线课程

  • 深度学习:主流框架和编程实战》——2.1.2 TensorFlow中的模型

    2 TensorFlow中的模型2.1.1节介绍了TensorFlow的诞生及特点,这一小节主要说明TensorFlow的三种主要模型:计算模型、数据模型和运行模型。(1)计算模型计算图(Graph)是TensorFlow中一个最基本的概念,是TensorFlow的计算模型。TensorFl

    作者: 华章计算机
    发表时间: 2019-06-04 19:37:53
    5674
    0
  • 华为云深度学习服务于2019年5月30日00:00(北京时间)退市通知

    产品公告 > 华为云深度学习服务于2019年5月30日00:00(北京时间)退市通知 华为云深度学习服务于2019年5月30日00:00(北京时间)退市通知 2019-04-30 尊敬的华为云客户: 华为云计划于2019/5/30 00:00(北京时间)将深度学习服务正式退市。 华

  • 注意力机制如何提升深度学习模型在NLP任务上的表现

    任务。 6. 总结 注意力机制的引入为深度学习模型在 NLP 任务上的表现带来了革命性的提升。通过赋予模型选择性关注能力,注意力机制使得模型能够更好地捕捉长距离依赖关系,增强模型的可解释性,并显著提高训练效率。以 Transformer 为代表的模型,通过广泛应用自注意力机制,彻底改变了

    作者: wljslmz
    发表时间: 2024-08-15 23:28:22
    89
    0
  • 学习笔记|EM算法的收敛

    EM算法提供一种近似计算含有隐变量概率模型的极大似然估计的方法。EM算法的最大优点是简单性和普适性。我们很自然地要问:EM算法得到的估计序列是否收敛?如果收敛,是否收敛到全局最大值或局部极大值?下面给出关于EM算法收敛性的两个定理。 证明: 由于 取对数有 (可参见学习笔记|EM算法

    作者: darkpard
    发表时间: 2021-12-22 12:03:25
    853
    0
  • 深度学习学习 XOR

    们得到 w = 0 以及 b = 12。线性模型仅仅是在任意一点都输出 0.5。为什么会发生这种事?演示了线性模型为什么不能用来表示 XOR 函数。解决这个问题的其中一种方法是使用一个模型学习一个不同的特征空间,在这个空间上线性模型能够表示这个解。       具体来说,我们这

    作者: 小强鼓掌
    952
    3
  • (Moxing篇一)自研深度学习MoXingAPI使模型训练再次升级

    n><align=left>华为云深度学习的高效性是通过混合并行、梯度压缩、卷积加速、EASGD等技术加快模型训练速度;内置模型压缩能力,可极大降低模型大小成本。以下是基于华为云深度学习服务的实验数据。</align><align=left><b> </b>18816</alig

    作者: freeborn0601
    18436
    5
  • 数学建模学习(68):机器学习训练模型的保存与模型使用

    训练的机器学习模型。 Pickle 是一个通用的对象序列化模块,可用于序列化和反序列化对象。虽然它最常与保存和重新加载经过训练的机器学习模型相关联,但它实际上可以用于任何类型的对象。以下是如何使用 Pickle 将训练好的模型保存到文件并重新加载以获取预测。 模型保存 接着

    作者: 川川菜鸟
    发表时间: 2022-05-18 16:01:31
    292
    0
  • 使用Python实现深度学习模型:语音合成与语音转换

    aths) # 训练模型 tacotron2_model.fit(train_generator, epochs=10) 步骤五:构建语音转换模型 我们将使用WaveGlow模型来构建语音转换系统。以下是模型定义的代码: # 构建WaveGlow模型 def build_w

    作者: Echo_Wish
    发表时间: 2024-07-19 08:21:13
    101
    0
  • 如何判断任务场景应通过调整提示词还是场景微调解决 - 盘古大模型 PanguLargeModels

    词通常可以有效引导模型生成合理的回答。 例如,对于一些常见的问答场景(如常见百科问题),由于这些领域的相关数据广泛存在,模型通常能够较好地理解并生成准确回答。在这种情况下,通过调整提示词来引导模型的生成风格和细节,通常可以达到较好的效果。 业务逻辑的复杂性 判断任务场景的业务逻辑

  • 在ModelArts自动学习中,如何进行增量训练? - AI开发平台ModelArts

    在ModelArts自动学习中,如何进行增量训练? 在自动学习项目中,每训练一次,将自动产生一个训练版本。当前一次的训练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。