已找到以下 10000 条记录
  • 训练管理(旧版) - AI开发平台ModelArts

    训练管理(旧版) 训练作业 训练作业参数配置 可视化作业 资源和引擎规格接口 作业状态参考 父主题: 历史API

  • 机器学习服务是什么?

    简单介绍一下机器学习服务是什么

  • 深度学习之用于 MLP 训练的反向传播

    我们考虑一个具有单个隐藏层的非常简单的多层感知机。为了训练这个模型,我们将使用小批量随机梯度下降算法。反向传播算法用于计算单个小批量上的代价的梯度。具体来说,我们使用训练集上的一小批量实例,将其规范化为一个设计矩阵 X 以及相关联的类标签向量 y。网络计算隐藏特征层 H = max{0

    作者: 小强鼓掌
    527
    0
  • IoT在线训练

    【汇总】IoT在线训练营Hi,小同学,欢迎来到IoT在线训练营,限时开放~在这里你可以和我们一起学习、交流、赢奖品快速构建物联网端到端开发能力,掌握HCIP-IoT Developer 在线实验本课程免费开放,参与活动还有全新升级华为P30大奖等你拿哦!活动时间:2019年4月1

    作者: xuan88
    发表时间: 2019-04-23 18:05:12
    6372
    0
  • 2022CANN训练营新手应用开发课学习笔记

    2022CANN训练营新手应用开发课学习笔记 去年看到了CANN的训练营,奈何当时事情比较多,再加上还没接触过深度学习的相关知识,没能跟上,最后课程和奖品都错过了。今年决定报一下名,希望这次可以跟上。(PS:要补的东西好多啊)。 开营打个卡 还是熟悉的大佬讲解,这次的课程分

    作者: 孙小北
    发表时间: 2022-04-25 01:32:47
    551
    0
  • 深度学习算法中的协同训练(Co-training)

    操作。 结论 协同训练是一种有效的半监督学习方法,在深度学习算法中得到了广泛的应用。通过利用未标注数据、解决标注数据稀缺问题、多视角学习和多任务学习,协同训练可以提高模型的性能和泛化能力。在未来的研究中,我们可以进一步探索协同训练的机制和应用,以推动深度学习技术的发展和应用。

    作者: 皮牙子抓饭
    发表时间: 2023-09-24 15:09:42
    63
    1
  • 使用Python实现深度学习模型的分布式训练

    深度学习的发展过程中,模型的规模和数据集的大小不断增加,单机训练往往已经无法满足实际需求。分布式训练成为解决这一问题的重要手段,它能够将计算任务分配到多个计算节点上并行处理,从而加速训练过程,提高模型的训练效率。本文将详细介绍如何使用Python实现深度学习模型的分布式训练,并通过具体代码示例展示其实现过程。

    作者: Echo_Wish
    发表时间: 2024-12-16 08:21:45
    87
    0
  • 横向联邦训练作业对接MA - 可信智能计算服务 TICS

    创建可信联邦学习训练型作业 参考步骤创建横向训练型作业创建可信联邦学习训练型作业,运行环境选择ModelArts和PriorityModelArts时,新增的资源配额是使用MA Lite资源池进行训练时,工作负载需要配置的资源参数。 图2 配置参数 父主题: 可信联邦学习作业

  • Python机器学习训练Tesseract

    文件来保证你有足够的训练数据。因为 Tesseract 会忽略那 些不能读取的文件,所以建议你尽量多做一些矩形定位文件,以保证训练足够充分。如果 你觉得训练的 OCR 结果没有达到你的目标,或者 Tesseract 识别某些字符时总是出错,多 创建一些训练数据然后重新训练将是一个不错的改进方法。

    作者: Lansonli
    发表时间: 2021-09-28 15:08:31
    1483
    0
  • 华为云在线课堂AI技术领域课程“深度学习学习心得体会

       本周主要学习了华为云在线课堂AI技术领域课程中“深度学习”的前三章,本文主要写一些学习心得如下: 神经网络中的基本概念: 神经元、神经网络、感知机、激活函数以及损失函数等网络的基本组成与概念。还学习了网络的训练方法包括前向传播、与误差反向

    作者: 在云空中漫步
    发表时间: 2022-07-08 09:43:14
    648
    0
  • 腾讯医疗AI深度学习训练模型MedicalNet

    2019年8月,腾讯优图首个医疗AI深度学习训练模型 MedicalNet 正式对外开源。这也是全球第一个提供多种 3D 医疗影像专用预训练模型的项目MedicalNet具备以下特性: 1、MedicalNet提供的预训练网络可迁移到任何3D医疗影像的AI应用中,包括但不限于分

    作者: AI资讯
    8751
    36
  • 无监督领域知识数据量无法支持增量预训练,如何进行模型学习 - 盘古大模型 PanguLargeModels

    无监督领域知识数据量无法支持增量预训练,如何进行模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供

  • 资料学习 - 基于SVM深度训练的特征工程

    中起着至关重要的作用。最初的设计是通过手工算法检测显著元素,现在卷积神经网络(CNNs)的不同层次经常学习特征。本文开发了一种基于训练cnn特征提取的通用计算机视觉系统。多个学习到的特征被组合成一个单一的结构,用于不同的图像分类任务。该系统是通过测试从cnn内层提取特征并将其作为

    作者: RabbitCloud
    648
    1
  • 概要 - CodeArts IDE Online

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

  • 训练型横向联邦作业流程 - 可信智能计算服务 TICS

    训练型横向联邦作业流程 联邦学习分为横向联邦及纵向联邦。相同行业间,特征一致,数据主体不同,采用横向联邦。不同行业间,数据主体一致,特征不同,采用纵向联邦。xx医院的应用场景为不同主体的相同特征建模,因此选用横向联邦。 创建训练型横向联邦学习作业。 图1 创建训练型横向联邦学习作业

  • 如何基于ModelArts实现最快最普惠的深度学习训练

    随着过去几年的发展,以ResNet50为代表的CNN模型已经成为了深度学习在计算机视觉方面最常用的模型之一。然而深度学习模型的训练通常非常慢,例如,如果用1块P100的GPU训练一个ResNet50需要1周时间(假如训练90个Epoch)。在工业界,我们都追求极致的训练速度,以便进行快速的产品迭代。 目前,

    作者: sound
    发表时间: 2019-12-28 11:22:36
    8038
    0
  • 《Java 与 Deeplearning4j:开启深度学习高效训练之旅》

    用集成学习的方法,将多个训练好的模型进行组合,以提高模型的整体性能。 在 Java 中高效地使用 Deeplearning4j 框架进行深度学习模型训练需要从数据准备、模型构建、训练、评估与调优等多个环节精心打磨。只有每个环节都做到严谨细致、合理优化,才能构建出高性能的深度学习模型,在人工智能的浪潮中借助

    作者: 程序员阿伟
    发表时间: 2024-12-22 22:59:54
    90
    0
  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 - CodeArts IDE Online

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

  • 指定GPU运行和训练python程序 、深度学习单卡、多卡 训练GPU设置【一文读懂】

    此次博文内容难以 以偏概全,如有不恰当的地方,欢迎评论区批评指正 对于即将入行计算机视觉的小伙伴,墨理这里推荐收藏的干货博文目前如下 ❤️ 深度学习模型训练基础环境搭建相关教程————认真帮大家整理了 🚀🚀 墨理学AI 🎉 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿

    作者: 墨理学AI
    发表时间: 2022-01-09 06:31:22
    1451
    0
  • 深度学习的分布式训练与集合通信(一)

    者可以参考链接。  在了解了上述有关模型训练和通信操作的背景知识后,我们来看看分布式训练是如何利用多卡并行来共同完成大模型训练的,以及不同分布式训练策略背后的通信操作。 分布式训练的并行策略 什么是分布式训练?通俗易懂地说,就是将大模型训练这个涉及到庞大数据量和计算量的任务切成小

    作者: 昇腾CANN
    发表时间: 2024-11-15 16:59:24
    549
    0