检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
String 训练作业的id,可通过创建训练作业生成的训练作业对象查询,如"job_instance.job_id",或从查询训练作业列表的响应中获得。 表2 返回参数说明 参数 参数类型 描述 kind String 训练作业类型。默认使用job。 枚举值: job:训练作业 hetero_job:异构作业
据集对预置的模型进行重训练,快速构建花卉图像分类应用。 链接 基于ModelArts JupyterLab在线调优钢筋检测 本实验指导用户在ModelArts的在线开发环境中开发调试一个钢筋检测模型。
模型训练 使用特征工程处理后生成的训练集进行模型训练。 创建联邦学习训练任务(简易编辑器) 单击简易编辑器界面右上角的“训练”。 进入“训练任务配置”界面,如图1所示。 图1 训练任务配置 参数说明,如表1所示。 表1 参数配置 区域 参数名称 参数描述 任务说明 任务名称 训练任务的名称。
算法训练 斜率计算 资源限制 时间限制:1.0s 内存限制:512.0MB 输入两个点的坐标,即p1 = (x1, y1)和p2=(x2, y2),求过这两个点的直线的斜率。如果斜率为无穷大输出“INF”。 样例输入 1 22 4 样例输出
数据集概览 A-Train云分割数据集旨在训练深度学习模型,从多角度卫星图像中体积分割云层。该数据集包含丰富的云层信息,适用于云检测研究。 资源获取 数据集由NASA开放,用户可以从其开放数据门户下载相关数据,进行云检测和深度学习算法的训练。 应用场景 除了云检测,该数据集还
AI应用准备完成后,您可以将AI应用部署为在线服务,对在线服务进行预测和调用。前提条件数据已完成准备:已在ModelArts中创建状态“正常”可用的AI应用。由于在线运行需消耗资源,确保帐户未欠费。操作步骤登录ModelArts管理控制台,在左侧导航栏中选择“部署上线 > 在线服务”,默认进入“在线服务”列表。
深度学习的训练过程存在随机性,主要体现在以下几个方面:权重初始化神经网络的权重通常随机初始化,不同的初始值会影响模型的收敛路径和最终性能。数据 shuffling训练数据在每个 epoch 前会被随机打乱,导致每次训练时数据顺序不同,影响梯度更新。DropoutDropout 随
我们考虑一个具有单个隐藏层的非常简单的多层感知机。为了训练这个模型,我们将使用小批量随机梯度下降算法。反向传播算法用于计算单个小批量上的代价的梯度。具体来说,我们使用训练集上的一小批量实例,将其规范化为一个设计矩阵 X 以及相关联的类标签向量 y。网络计算隐藏特征层 H = max{0
到端的深度学习模型训练和推理性能的国际权威基准测试平台,相应的排行榜反映了当前全球业界深度学习平台技术的领先性。计算时间和成本是构建深度模型的关键资源,DAWNBench提供了一套通用的深度学习评价指标,用于评估不同优化策略、模型架构、软件框架、云和硬件上的训练时间、训练成本、推理延迟以及推理成本。
模型训练服务首页简介 模型训练服务首页展示了用户自己创建的项目和用户所属租户下面其他用户创建的公开项目,提供如下功能: 创建项目 使用模板快速创建项目,模板中已经预制数据集、特征处理算法、模型训练算法和模型验证算法。 查看和编辑项目信息 模型训练服务首页界面如下图所示。 图1 模型训练服务首页
理日志,帮助开发者进行问题的定界和定位。 图6 在线调试-真实设备结构 在烟感产品的开发空间,选择“在线调试”,并单击“新增测试设备”。 在弹出的“新增测试设备”窗口,选择“真实设备”,输入测试设备的参数,单击“确定”。 图7 在线调试-新增测试设备 注:如果使用DTLS传输层安全协议接入时,请妥善保存密钥。
GP”算法,选取十个超参组合,依次进行模型训练。 图2 超参优化配置 单击“开始训练”,回到代码编辑界面。 可通过单击界面右上角的“训练任务”,查看训练任务状态。如图3所示。 单击训练任务下方的图标,下方会展示模型训练日志、运行结果日志、运行图和Tensorboard窗口。 图3 训练任务 模型训练结束后,单击
三、训练模型 数据和代码准备完成后,您可以创建一个训练作业 例如:下载mindspore源码https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/inceptionv4 填写配置训练参数后,单击“Apply
基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型
创建工程 创建训练工程是从创建模型训练工程、编辑模型训练代码到调试模型训练代码的端到端的代码开发过程。 创建模型训练工程:创建模型训练代码编辑和调试的环境。 编辑模型训练代码:在线编辑模型训练代码。 调试模型训练代码:在线调试编辑好的模型训练代码。 创建训练工程步骤如下。 单击“创建”,弹出“创建训练”对话框。
3.1.3 迭代训练模型 迭代训练的代码分成两步来完成: 1.训练模型 建立好模型后,可以通过迭代来训练模型了。TensorFlow中的任务是通过session来进行的。 下面的代码中,先进行全局初始化,然后设置训练迭代的次数,启动session开始运行任务。代码3-1 线性回归(续)24
当前ModelArts各功能都只支持有限的框架版本,如果想要使用一个预置框架没有的版本应该如何处理?下面以pytorch 1.5和tensorflow 1.14为例,如何在训练作业预置框架进行动态配置Pytorch 1.5和tensorflow 1.14Pytorch 1.5要基于cuda 10.1版本以上,tensorflow
管理在线服务 您可以对在线作业进行“编辑”、“启动”、“开通”、“停止”、“删除”等操作。您也可以通过单击在线服务名称查看在线服务的详细信息。 编辑服务 用户可以通过“编辑”在线服务修改该参数信息进行计算。生成的数据会覆盖原来的在线服务计算生成的数据。“部署中”的在线服务不支持编辑。操作步骤如下:
1、(操作题)设计一个表示服务器的类。包含服务器的属性有: CPU个数,内存大小,磁盘空间大小,操作系统类型(Linux, Windows),其中操作系统类型设置为私有变量,外部不可以更改。实现一个方法,输出服务器的属性内容为以下格式: 8核CPU, 40G内存, 150G磁盘空间,Linux。