检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
预测接口(文本标签) 分词模型 命名实体识别模型 父主题: 在线服务API
预测接口 功能介绍 线上预测接口。 URI POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1 请求参数说明。 表1 请求参数说明 参数名称 是否必选 参数类型 说明 rec_num 否 Integer 请求返回数量,默认返回50条。 user_id 是 String
预测接口(排序) 功能介绍 线上预测接口。 URI POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1 请求参数说明。 表1 请求参数说明 参数名称 是否必选 参数类型 说明 rec_num 否 Integer 请求返回数量,默认返回50条。 user_id 是
Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。 表1 逻辑斯蒂回归参数说明 参数名称 说明 名称 自定义
res-word-segmentation 功能1 -- 关键词提取(未排序) 将待处理的文本进行分词处理并筛选保留关键词。 URL POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1 请求参数说明。 表1 请求参数说明 参数名称 是否必选 参数类型 说明 title 是 String
过在线预测功能测试推荐结果进一步调整作业参数,也可以通过预测接口来调用API,获取推荐结果。 在线预测 登录RES管理控制台,在左侧菜单栏中选择“在线服务”,进入服务列表页面。 单击目标服务名称进入服务详情页面,单击下方的“预测”页签,输入预测代码,单击“预测”后显示预测结果,如
两种预测方式。 代码:输入预测代码,单击“预测”后显示预测结果,如图1所示。输入用户ID和推荐数量,或者物品项,根据您设置的策略返回用户的预测结果。如果物品项有多个,需要用英文逗号隔开。 图1 代码预测 表单:输入“ID”和设置“最大推荐个数”,也可以设置“物品项”。其中ID可以
推荐结果多样性打散 本实践针对用户的单次推荐预测请求,在返回的物品列表中,对规定的属性进行打散,避免推荐结果出现同一属性物品扎堆出现的现象。 本实践的基本流程如下: 准备工作 创建数据源 配置在线服务参数 获取推荐结果 准备工作 已注册华为云帐号,并且账号为可用状态。 确保用户选
单击“预测”页签,包括两种预测方式。 代码:输入预测代码,单击“预测”后显示预测结果,如图1所示。输入用户ID、推荐数量,根据您设置的策略返回用户的预测结果。如果是关联推荐,需要配置“物品项”,即推荐与物品项相关的产品。如果物品项有多个,需要用英文逗号隔开。 图1 代码预测 表单
命名实体识别模型 模型名称 res-default-ner 功能 将待处理的文本中的人名、地名、组织名提取出来。 URL POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1。 表1 请求参数说明 参数名称 是否必选 参数类型 说明 text 是 String 待处理的文本。
逻辑斯蒂回归-LR 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。单击查看逻辑斯蒂回归详情信息。 表1
发布服务 步骤5:获取预测结果 在线服务发布执行成功后,您可以进入在线服务,发起预测请求进行测试。 在“自定义场景”列表页面,单击目标场景名称,进入“自定义场景详情”页面。 单击“预测”页签,进入预测页面。 预测方式选择“代码”,在“预测代码”部分输入预测代码。单击“预测”,右侧出现排序后的预测结果。
参数。 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法
景详情页面,单击“预测”页签,包括两种预测方式。此样例以页面预测代码为例,指导您获取推荐结果。 选择“代码”方式,在左侧框内输入预测代码,单击“预测”后在右侧显示预测结果,如图6所示。输入用户ID和推荐数量,根据您设置的策略返回用户的预测结果。 图6 代码预测 请求代码 “id”
修改在线服务参数 修改“过滤(黑名单)”下面的参数。 “实时行为过滤” :“开启”。 “时间区间(天)”:配置为1,即可实现过滤用户近一天(预测请求的时间点前推24h)内浏览或者曝光过的物品。 “行为类型”:配置“view”和“click”。 图2 配置过滤条件 配置完成后,单击“确认”。
在线服务API 获取规格列表 部署服务 预测接口 预测接口(排序) 预测接口(文本标签) 更新服务 查询服务列表 查询服务详情 订阅服务 停止/启动服务 删除服务 查询镜像列表 父主题: API(V1不推荐)
在线流程 展示在线流程名称、在线流程ID以及在线流程关于融合、过滤、排序、公共配置和模型相关的参数信息。 预测 可对运行中状态的在线服务进行预测,输入预测代码,单击“预测”后显示预测结果。 配置更新记录 展示配置相关记录。 单击配置记录前方的可查看该记录下详细的模型信息,包括模型名称
最小在线并发规格支持弹性伸缩,是否设置最小规格即可? 目前推荐系统支持的默认在线并发规格为5。由于伸缩资源有一定的时延导致预测接口出现变慢的情况,因此在可预见的并发规格中,建议填写实际并发的规格,推荐系统后台会根据并发规格提前预留好资源,避免峰值的到来。 如果需要更多的规格,请您提工单联系工程师解决。
RES服务配额 资源 限制条件 建议 推荐引擎预测接口中最多请求结果数量 20 可提工单支持更高规格。 单份画像数据中最多支持的特征数量 30 单场景在线服务最多支持每秒请求的次数(TPS) 200 数据源个数 5 场景个数 10 单场景下推荐预测返回的结果集个数 20 如果当前资源配额
、推荐场景的离线作业计算计费。 如果选取4CU计算规格执行一小时作业运行,则按需消耗为0.49*4=1.96元。 在线服务 应用于在线服务预测计费。 TPS统计规则为每小时平均TPS,例如每秒调用5次,持续调用1小时,TPS即为5,这一小时按需计费消耗为5*0.95=4.95元。