检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
y可以是多维的,比如0维的array就是标量,1维的array就是向量,2维的array就是矩阵等。为什么要了解NumPy呢?因为大多数深度学习框架的基础数据结构都参考了NumPy中的array,比如MXNet框架中的NDArray、TensorFlow和PyTorch框架中的Tensor等。那么既然有NumPy
ook官方维护的深度学习框架之一,是基于原有的Torch框架推出的Python接口。PyTorch的官方文档地址:https://github.com/pytorch,GitHub地址:https://github.com/pytorch。Torch是一种深度学习框架,其主要采用
1.2.4 TensorFlowTensorFlow是Google官方维护的深度学习框架,TensorFlow的官方文档地址:https://tensorflow.google.cn/,GitHub地址:https://github.com/tensorflow/tensorfl
2.4 MNIST数据集MNIST是一个包含60 000个0~9这十个数字的28×28像素灰度图像的数据集。MNIST也包括10 000个测试集图像。数据集包含以下四个文件:train-images-idx3-ubyte.gz:训练集图像(9 912 422字节),见http://yann
PCA这种将数据变换为元素之间彼此不相关表示的能力是PCA的一个重要性质。它是消除数据中未知变动因素的简单表示实例。在PCA中,这个消除是通过寻找输入空间的一个旋转(由 W 确定),使得方差的主坐标和 z 相关的新表示空间的基对齐。虽然相关性是数据元素间依赖关系的一个重要范畴,但
No dashboards are active for the current data set. 特地重新训练了,记下来日志目录,都是创建TensorBoard还是错误,不知道怎么回事,求解
在目前基于深度学习的语言模型结构主要包括三个类别:基于RNN的语言模型,基于CNN的语言模型和基于Transformer的语言模型。接下来我会对它们进行依次介绍,并且逐一分析他们的优缺点。 1.通过RNN的语言模型结构 图1 基于RNN的语言模型结构 随着深度学习的发展,在受到NLP(Natural
1.2.5 其他除了前面提到的几个深度学习框架之外,还有一些深度学习框架也非常受欢迎。Keras,一个基于TensorFlow和Theano且提供简洁的Python接口的深度学习框架,上手非常快,受欢迎程度非常高。Theano,老牌的深度学习框架之一,由蒙特利尔大学的机器学习团队
书要重点探讨的深度学习是具有多级表示的表征学习方法。在每一级(从原始数据开始),深度学习通过简单的函数将该级的表示变换为更高级的表示。因此,深度学习模型也可以看作是由许多简单函数复合而成的函数。当这些复合的函数足够多时,深度学习模型就可以表达非常复杂的变换。深度学习可以逐级表示越
语言处理等。 二、深度学习 定义:深度学习(Deep Learning, DL)是机器学习(Machine Learning, ML)中的一个子领域,利用多层次(深层)神经网络来自动从数据中提取特征和规律,模仿人脑的神经系统来进行信息处理。 核心思想:深度学习的核心思想是通过深层
不同的输入参数,本书后面的章节还会进行详细介绍。得益于MXNet的静态图设计和对计算过程的优化,你会发现MXNet的训练速度相较于大部分深度学习框架要快,而且显存占用非常少!这使得你能够在单卡或单机多卡上使用更大的batch size训练相同的模型,这对于复杂模型的训练非常有利,有时候甚至还会影响训练结果。
CHAPTER?1第1章深度学习简介1.1 深度学习的历史讲解深度学习,不得不提到人工神经网络,本书就先从神经网络的历史讲起,我们首先来看一下第一代的神经网络。1. 第一代神经网络 神经网络的思想最早起源于1943年的MCP人工神经元模型,当时是希望能够用计算机来模拟人的神经元反
语义分割是什么?语义分割(semantic segmentation) : 就是按照“语义”给图像上目标类别中的每一点打一个标签,使得不同种类的东西在图像上被区分开来。可以理解成像素级别的分类任务,直白点,就是对每个像素点进行分类。简而言之,我们的目标是给定一幅RGB彩**像(高
卷积操作就是filter矩阵跟filter覆盖的图片局部区域矩阵对应的每个元素相乘后累加求和。
Dropout(Dropout)(Srivastava et al., 2014) 提供了正则化一大类模型的方法,计算方便但功能强大。在第一种近似下,Dropout可以被认为是集成大量深层神经网络的实用Bagging方法。Bagging涉及训练多个模型,并在每个测试样本上评估多个
在Bagging的情况下,每一个模型在其相应训练集上训练到收敛。在Dropout的情况下,通常大部分模型都没有显式地被训练,因为通常父神经网络会很大,以致于到宇宙毁灭都不可能采样完所有的子网络。取而代之的是,在单个步骤中我们训练一小部分的子网络,参数共享会使得剩余的子网络也能有好
runtimeONNX Runtime是一种跨平台深度学习训练和推理机加速器,与深度学习框架,可以兼容TensorFlow、Keras和PyTorch等多种深度学习框架。ONNX (Open Neural Network Exchange) 是一种用于表示深度学习模型的开放格式,ONNX定义了一组
深度学习是机器学习的一个子集,它通过接收大量数据并试图从中学习来模拟人脑。在IBM对该术语的定义中,深度学习使系统能够“聚集数据,并以令人难以置信的准确性做出预测。” 然而,尽管深度学习令人难以置信,但IBM尖锐地指出,它无法触及人脑处理和学习信息的能力。深度学习和 DNN(深度
长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。
0. 简介 深度学习中做量化提升运行速度是最常用的方法,尤其是大模型这类非常吃GPU显存的方法。一般是高精度浮点数表示的网络权值以及激活值用低精度(例如8比特定点)来近似表示达到模型轻量化,加速深度学习模型推理,目前8比特推理已经比较成熟。比如int8量化,就是让原来32bit