已找到以下 10000 条记录
  • MindSpore学习之MindInsight源码安装(GPU)

    Pip 安装 前置环境:MindSpore所需环境(Python、Cuda等) Pip 安装最新版 source activate py39_ms17 pip install mindinsight 源码编译及Docker安装参考:https://www.mindspore

    作者: 孙小北
    发表时间: 2022-05-30 15:10:48
    487
    0
  • 【云驻共创】有什么好用的深度学习gpu云服务器平台

    一、深度学习GPU云服务器平台概述 目前市面上有许多深度学习GPU云服务器平台,它们提供了丰富的计算资源和优质的服务,为深度学习研究者提供了强大的支持。这些平台通常具备高性能GPU、大容量的存储和高速的网络连接,能够满足深度学习模型训练和推理的需求。   1.平台对比

    作者: 皮牙子抓饭
    发表时间: 2024-04-09 12:00:09
    14
    0
  • 2021 编程语言排行榜出炉!

    IEEE 2021 编程语言排行榜的具体情况如下。 Top 10 编程语言:Python 五连冠、微软 C# 语言排名飞升 与 2020 年排行榜相比,Python、Java、C、C++ 和 JavaScript 依然占据 2021 排行榜的前 5 名。 但是,6 至 10

    作者: C语言与CPP编程
    发表时间: 2022-01-06 15:53:58
    576
    0
  • GPU — 分布式训练

    批量较大,影响模型精度 热身,调整学习速率(线性上升,LARC/LARS) 给渐变添加噪声 优化器的选择(SGD,Momentum,Adam,Rmsprop) 平衡速度和准确性 工程挑战 CPU 和 GPU 性能提升不平衡 先纵向扩展,再横向扩展 GPU 型号,NVLin

    作者: 云物互联
    发表时间: 2022-07-14 16:00:23
    240
    0
  • 在华为云上使用弹性GPU服务加速深度学习训练和推理

    首先,登录华为云控制台,并创建一个GPU实例。选择合适的GPU类型和配置,确保满足深度学习任务的要求。在创建实例过程中,可以选择预安装深度学习框架和相应的GPU驱动程序。 步骤二:安装深度学习框架 连接到创建的GPU实例后,需要安装所选的深度学习框架。以TensorFlow为例,

    作者: 皮牙子抓饭
    发表时间: 2023-06-30 17:17:43
    2
    0
  • 深度学习——PyCharm配置远程服务器(蓝耘GPU智算云)指南

    深度学习——PyCharm配置远程服务器(蓝耘GPU智算云)指南 介绍 深度学习是一种机器学习技术,广泛应用于图像识别、自然语言处理等领域。为了高效训练大型模型,研究人员通常选择性能强大的远程GPU服务器,如蓝耘GPU智算云。本指南将详细介绍如何在PyCharm中配置远程服务器,以便于本地开发和远程训练。

    作者: 鱼弦
    发表时间: 2024-09-10 09:39:38
    272
    0
  • 深度学习 GPU环境 Ubuntu 16.04 + Nvidia GTX 1080 + Python 3.6 + CUDA 9.

    Neural Network library,是专门用来对深度学习加速的库,它支持 Caffe2, MATLAB, Microsoft Cognitive Toolkit, TensorFlow, Theano 及 PyTorch 等深度学习的加速优化,目前最新版本是 cuDNN 7.1,

    作者: 崔庆才丨静觅
    发表时间: 2018-10-30 19:31:13
    4557
    0
  • 使用DCS实现排行榜功能 - 分布式缓存服务 DCS

    使用DCS实现排行榜功能 方案概述 在网页和APP中经常需要用到榜单的功能,对某个key-value的列表进行降序显示。当操作和查询并发大的时候,使用传统数据库就会遇到性能瓶颈,造成较大的时延。 使用分布式缓存服务(DCS)的Redis版本,可以实现一个商品热销排行榜的功能。它的优势在于:

  • 深度学习基础:5.CIFAR10数据集分类及GPU使用实例

    model_path) 调用GPU进行训练 调用GPU训练很简单,首先写这句device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")来判断电脑上的GPU是否好用,如果可以用就调用第0块GPU。后面再将数据和模型

    作者: zstar
    发表时间: 2022-08-05 17:02:23
    235
    0
  • CCE AI套件(NVIDIA GPU) - 云容器引擎 CCE

    /nvidia-smi 若能正常返回GPU信息,说明设备可用,插件安装成功。 GPU驱动支持列表 当前GPU驱动支持列表仅针对1.2.28及以上版本的GPU插件。 如果您需要安装最新版本的GPU驱动,请将您的GPU插件升级到最新版本。 表2 GPU驱动支持列表 GPU型号 支持集群类型 机型规格

  • 准备GPU虚拟化资源 - 云容器引擎 CCE

    准备GPU虚拟化资源 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。本文介绍如何在GPU节点上实现GPU的调度和隔离能力。 前提条件 配置 支持版本 集群版本 v1.23.8-r0、v1.25

  • 斯坦福DAWNBench深度学习训练及推理榜单:华为云ModelArts拿下双料冠军

    域。随着深度学习模型越来越大,所需数据量越来越多,所需的AI算力资源和训练时间越来越长,深度学习的训练和推理性能将是重中之重。 斯坦福大学DAWNBench是全球人工智能领域最权威的竞赛之一,是用来衡量端到端的深度学习模型训练和推理性能的国际权威基准测试平台,相应的排行榜反映了当前业界深度学习平台技术的领先性。

  • wsl2 gpu深度概率训练初体验

    之前发过帖子安装好了wsl2下mindspore gpu环境, 想看下wsl2 环境下对gpu性能有多少损耗,同时也想体验下深度概率模型的魅力,二话不说,先跑个demo试试数据准备mnist已经被玩坏了,建议新手玩家可以直接从fashion_mnist入手,数据格式和操作和mni

    作者: 芳菲菲兮满堂
    2497
    0
  • GPU与Cuda

    块的乘法,处理速度非常快。这也是GPU比CPU快且更适合于深度学习的第三个原因。三.什么是cuda?显卡:(GPU)主流是NVIDIA的GPU深度学习本身需要大量计算。GPU的并行计算能力,在过去几年里恰当地满足了深度学习的需求。AMD的GPU基本没有什么支持,可以不用考虑。驱

    作者: qinggedada
    发表时间: 2020-08-11 17:46:46
    7676
    0
  • 深度学习之TensorFlow入门、原理与进阶实战》—2.3 GPU版本的安装方法

    2.3 GPU版本的安装方法  如果使用GPU版本,在执行pip之后,还需要安装CUDA和CuDNN。2.3.1 安装CUDA软件包  首先来到CUDA官方网站https://developer.nvidia.com/cuda-downloads,单击Windows按钮后,如图2-8所示。图2-8

    作者: 华章计算机
    发表时间: 2019-05-31 13:07:58
    6115
    0
  • linux查看GPU配置

    下面一张表示每个进程占用的显存使用率。 显存占用和GPU占用是两个不一样的东西,显卡是由GPU和显存等组成的,显存和GPU的关系有点类似于内存和CPU的关系。我跑caffe代码的时候显存占得少,GPU占得多,师弟跑TensorFlow代码的时候,显存占得多,GPU占得少。 查看GPU型号 lspci |

    作者: irrational
    发表时间: 2022-02-06 16:17:42
    1577
    0
  • 卸载GPU加速型ECS的GPU驱动 - 弹性云服务器 ECS

    卸载GPU加速型ECS的GPU驱动 操作场景 当GPU加速型云服务器需手动卸载GPU驱动时,可参考本文档进行操作。 GPU驱动卸载命令与GPU驱动的安装方式和操作系统类型相关,例如: Windows操作系统卸载驱动 Linux操作系统卸载驱动 Windows操作系统卸载驱动 以Windows

  • 在Win10游戏本中搭建MindSpore-GPU深度学习环境

    背景自从华为开源了MIndSpore深度学习框架,题主就始终惦记着要充分利用手里有且仅有的游戏本,给它加持一套高大上的支持GPU的MindSpore环境,但让人泪奔的是——MindSpore-gpu不兼容Windows!!!虽然MindSpore也能在Windows里运行,但那是

    作者: ML饭
    8570
    7
  • GPU虚拟化

    管理员可以在虚拟化环境中运行GPU服务器上的AI工作负载,使用相同的管理工具来管理GPU集群。 5. 分布式深度学习框架的协同:GPU虚拟化和分布式深度学习框架可以协同工作,以加速深度学习应用的开发和部署。分布式深度学习框架通过将任务分布在多个GPU或多个节点上,显著提高计算效率

    作者: keepquiet
    发表时间: 2024-10-15 15:21:37
    268
    0
  • 概述 - 函数工作流 FunctionGraph

    概述 Serverless GPU是一种高度灵活、高效利用、按需分配GPU计算资源的新兴云计算服务。GPU能力Serverless化,通过提供一种按需分配的GPU计算资源,在一定范围内有效地解决原有GPU长驻使用方式导致的低资源利用率、高使用成本和低弹性能力等痛点问题。本文将介绍Serverless