内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习框架有哪些?

    深度学习框架有哪些?各有什么优势?

    作者: 可爱又积极
    759
    6
  • 深度学习学习路线

    经网络的基本结构和原理对于深度学习学习非常重要。 推荐教程: 《神经网络与深度学习》(Neural Networks and Deep Learning)(英)Michael Nielsen 著 三、进阶学习 1.深度学习模型 深度学习模型是深度学习中的核心,包括卷积神经网络、

    作者: 赵KK日常技术记录
    发表时间: 2023-06-24 17:11:50
    5
    0
  • 深度学习入门》笔记 - 01

    之前学了一个深度学习应用开发,学了一段时间,后来就没学了。 确实是"靡不有初,鲜克有终",现在不愿意再继续之前的学。我又找了一本书从头开始,这本书的名字是深度学习入门与TensorFlow实践>。 `数(scalar)`是一个数字。 简直是废话。 不过这才刚开始嘛。 多个数字有序

    作者: 黄生
    283
    1
  • 快递鸟免费物流快递单号查询API接口对接攻略

    目前提供快递查询的接口平台有:快递鸟(非淘系用户使用最多)菜鸟 (淘系用户使用)不同接口的区别:(1)快递鸟支持400多家物流快递公司,接口稳定免费,提供多种方式接口对接(2)菜鸟支持100多家物流快递公司接口,主要支持阿里淘系商家用户使用。快递API的应用场景与用途1. 最常见的应用场景如下:(1

    作者: 爱程序的小猿
    发表时间: 2019-08-15 16:48:55
    5702
    0
  • 深度学习入门》笔记 - 10

    59535760107353372.png) 好了我们上面说的是最简单的情况,因为为了学习,是一个权重或叫参数w,一个自变量x,并且只有一个观测点(x,y)。 在实际情况中,一般就不仅仅是学习的那么简单的情况。 数据会包含多个自变量,多个权重,很多个观测点。 用 $L(w)=L(w_1

    作者: 黄生
    194
    1
  • 客快物流大数据项目(三十九):Hue安装

    如有错误敬请指正!📢本文由 Lansonli 原创,首发于 CSDN博客🙉📢大数据系列文章会每天更新,停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨

    作者: Lansonli
    发表时间: 2022-02-16 15:28:17
    678
    0
  • gps信号发射器在物流公司的应用方案

    近期,我公司研发的gps信号发射器在上海某物流公司投入使用,gps模拟器的良好性能,得到客户的认可,gps发射器可同时模拟GPS定位授时信号,可对物流车的车载导航的接收机的定位、测试、授时、灵敏度和运动轨迹等指标进行实时测试和报表生成,实现无人值守的自动化测试。gps模拟器可同时

    作者: 月饼!@#%&()zz
    发表时间: 2020-09-08 21:16:17
    5650
    0
  • 深度学习入门》笔记 - 16

    层,这种关系无法表达。同时可以通过增加隐藏层的数量和每个隐藏层的节点数,来处理更加复杂的问题。拥有多个隐藏层的神经网络就可以实现深度学习。而数量越多,就需要更多的技巧来训练并发挥这些隐藏层的作用。

    作者: 黄生
    37
    4
  • 智慧园区-智慧物流园-5G应用

    【功能模块】智慧园区-智慧物流园-5G应用【操作步骤&问题现象】智慧园区-智慧物流园-5G应用在哪些方面?运用之后哪方面获取巨大提升?

    作者: Photon2
    618
    5
  • 浅谈深度学习常用术语

    深度学习常用术语· 样本(sample)或输入(input)或数据点(data point):训练集中特定的实例。我们在上一章中看到的图像分类问题,每个图像都可以被称为样本、输入或数据点。· 预测(prediction)或输出(output):由算法生成的值称为输出。例如,在先前

    作者: QGS
    22
    0
  • 深度学习典型模型

    型的深度学习模型有卷积神经网络( convolutional neural network)、DBN和堆栈自编码网络(stacked auto-encoder network)模型等,下面对这些模型进行描述。 卷积神经网络模型 在无监督预训练出现之前,训练深度神经网络通常非常困难

    作者: 某地瓜
    1673
    1
  • 深度学习之提前终止

    循环次数内没有进一步改善时,算法就会终止。此过程在算法中有更正式的说明。这种策略被称为提前终止(early stopping)。这可能是深度学习中最常用的正则化形式。它的流行主要是因为有效性和简单性。

    作者: 小强鼓掌
    325
    0
  • 深度学习之快速 Dropout

    使用Dropout训练时的随机性不是这个方法成功的必要条件。它仅仅是近似所有子模型总和的一个方法。Wang and Manning (2013) 导出了近似这种边缘分布的解析解。他们的近似被称为快速 Dropout(fast dropout),减小梯度计算中的随机性而获得更快的收

    作者: 小强鼓掌
    1197
    4
  • 深度学习之灾难遗忘

    每个 maxout 单元现在由 k 个权重向量来参数化,而不仅仅是一个,所以 maxout单元通常比整流线性单元需要更多的正则化。如果训练集很大并且每个单元的块数保持很低的话,它们可以在没有正则化的情况下工作得不错 (Cai et al., 2013)。maxout 单元还有一些

    作者: 小强鼓掌
    418
    0
  • 深度学习入门》笔记 - 22

    神经网络模型建立好了之后,必然要进行模型的评估来了解神经网络的表现。 神经网络的因变量通常有两种数据类型,定量数据和定性数据。不同因变量数据类型对应的模型误差的定义也不一样。当因变量为定性数据时,模型误差可以进一步分为两个类型: 假阳性率, FPR False Positive Rate

    作者: 黄生
    38
    3
  • 深度学习入门》笔记 - 24

    解决欠拟合问题的方法比较简单,增加模型复杂度就可以了。常见的方法是增加隐藏层的数量或者增加隐藏层的节点数,或者二者同时增加。如果训练误差持续下降,接近于0。而测试误差在下降后变得平稳,甚至略有上升。训练误差和测试误差的差距较大。这就是典型的过拟合情况。在建立神经网络模型的初始阶段

    作者: 黄生
    38
    2
  • 深度学习之聚类问题

    关于聚类的一个问题是聚类问题本身是病态的。这是说没有单一的标准去度量聚类的数据对应真实世界有多好。我们可以度量聚类的性质,例如每个聚类的元素到该类中心点的平均欧几里得距离。这使我们可以判断能够多好地从聚类分配中重建训练数据。然而我们不知道聚类的性质多好地对应于真实世界的性质。此外

    作者: 小强鼓掌
    536
    1
  • 深度学习入门》笔记 - 25

    L2惩罚法也是一个经典的正则化方法。 它是在原有损失函数的基础上,在构造一个新的损失函数。(带有惩罚项 是一个超参数)模型集成(model ensemble)可以提供模型的预测准确度,思想就是, 先训练大量结构不同的模型,通过平均、或投票方式综合所有模型的结构,得到最终预测。在实际中,有较大限制,原因很简单,

    作者: 黄生
    20
    1
  • 深度学习入门》笔记 - 14

    6253.png) 接下来实在是看不下去了,还有求偏导数的主要技巧用到了链式法则,还有其他的太难看了。所以这一小部分跳过。 接下来的内容是深度神经网络。 ![image.png](https://bbs-img.huaweicloud.com/data/forums/attach

    作者: 黄生
    60
    2
  • 深度学习之批量算法

    促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的 m 个样本都是彼此相同的拷贝。基于采样的梯度估计可以使用单个样本计算出正确的梯度,而比原来的做法少花了 m 倍时间。实践中,我们不太可能真的遇到这种最坏情况,但我们可能会发现大量样本都对

    作者: 小强鼓掌
    317
    1