检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
float,一般不建议用户修改 TPE算法 TPE算法全称Tree-structured Parzen Estimator,是一种利用高斯混合模型来学习超参模型的算法。在每次试验中,对于每个超参,TPE为与最佳目标值相关的超参维护一个高斯混合模型l(x),为剩余的超参维护另一个高斯混合模型
表示张量并行。 PP 8 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
String 模型名称。 model_version String 模型版本。 source_type String 模型来源,当模型是由自动学习产生时,返回此字段,取值为:auto。 status String 模型实例运行状态,取值为: ready:已就绪(所有实例已启动) co
表示张量并行。 PP 8 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
扣费。在“费用中心 > 账单管理 > 流水和明细账单 > 流水账单”中,“消费时间”即按需产品的实际使用时间。 查看自动学习和Workflow的账单 自动学习和Workflow运行时,在进行训练作业和部署服务时,会产生不同的账单。 训练作业产生的账单可参考查看训练作业的账单查询。
模型运行时环境。 model_metrics String 模型精度信息。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为auto。 model_type String 模型类型,取值为TensorFlow/Image/PyTorch/Template/MindSpore。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
分布式Tensorflow无法使用“tf.variable” MXNet创建kvstore时程序被阻塞,无报错 日志出现ECC错误,导致训练作业失败 超过最大递归深度导致训练作业失败 使用预置算法训练时,训练失败,报“bndbox”错误 训练作业进程异常退出 训练作业进程被kill 父主题: 训练作业
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
source_type String 此规格应用于模型的类型,取值为空或auto,默认为空,代表是用户自己产生的模型;取值为auto时,代表是自动学习训练的模型,计费方式有差别。 is_free Boolean 当前规格是否是免费规格,“true”表示是免费规格。 over_quota Boolean
过程。案例中使用到的“商超商品识别”模型来源于AI Gallery,AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 “商超商品识别”模型可以识别81类常见超市商品(包括蔬菜、水果和饮品),并给出置信度最高的5类商品的置信度得分。 步骤一:准备工作 已
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
一般情况包括如下两种内容类型: “application/json”,发送json数据。 “multipart/form-data”,上传文件。 说明: 针对机器学习类模型,仅支持“application/json” data 在线服务-非必选 批量服务-必选 String 请求体以json schema描述。参数说明请参考官方指导。
系统将根据您的模型匹配提供可用的计算资源。请在下拉框中选择可用资源,如果资源标识为售罄,表示暂无此资源。 例如,模型来源于自动学习项目,则计算资源将自动关联自动学习规格供使用。 “实例数” 设置当前版本模型的实例个数。如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置
# 加载断点 checkpoint = torch.load(local_ckpt_file) # 加载模型可学习参数 model.load_state_dict(checkpoint['net']) # 加载优化器参数 optimizer
“MA_NUM_GPUS=8” MA_TASK_NAME 作业容器的角色名,例如: MindSpore、PyTorch为worker 强化学习引擎为learner,worker TensorFlow为ps,worker “MA_TASK_NAME=worker” MA_NUM_HOSTS