检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
施建设重要一方面是继续夯实通用算力基础。 当前算力供给已经无法满足智能化社会构建,根据OpenAI统计,从2012年至2019年,随着深度学习“大深多”模型的演进,模型计算所需计算量已经增长30万倍,无论是计算机视觉还是自然语言处理,由于预训练模型的广泛使用,模型所需算力直接呈
边际似然损失,有可能导致目标预测不准确。本文的目标是通过解决梯度收缩问题来提高ENet的预测精度,同时保持其有效的不确定性估计。一个多任务学习(MTL)框架,被称为MT-ENet,被提出来实现这一目标。在MTL中,我们将Lipschitz修正均方误差(MSE)损失函数定义为另一种
Some sources point out that Frank Rosenblatt developed and explored all of the basic ingredients of the deep learning systems of today
ArrayList 简介 ArrayList 的底层是数组队列,相当于动态数组。与 Java 中的数组相比,它的容量能动态增长。在添加大量元素前,应用程序可以使用ensureCapacity操作来增加 ArrayList 实例的容量。这可以减少递增式再分配的数量。 ArrayList继承于
近几年媒体的大肆针对深度学习的宣传及报道,而深度学习是被证明为最先进的性能最好的技术之一,那它会不会逐步取代传统的机器学习了?
突然打破了这个天花板,他们惊人地超出了10.8个百分点,赢得了比赛。那个教授便是杰弗里·辛顿,他们使用的技术叫做深度学习。自20世纪80年代以来,辛顿一直致力于深度学习的研究工作,由于缺乏数据和计算能力,其有效性受到了限制,一直到2012年才取得成果。辛顿对这项技术的坚定信念最终
时所预测的输出,pˆdata 是经验分布。监督学习中,y 是目标输出。在本章中,我们会介绍不带正则化的监督学习,L的变量是 f(x; θ) 和 y。不难将这种监督学习扩展成其他形式,如包括 θ 或者 x 作为参数,或是去掉参数 y,以发展不同形式的正则化或是无监督学习。
我们还可能出于统计原因来选择深度模型。任何时候,当我们选择一个特定的机器学习算法时,我们隐含地陈述了一些先验,这些先验是关于算法应该学得什么样的函数的。选择深度模型默许了一个非常普遍的信念,那就是我们想要学得的函数应该涉及几个更加简单的函数的组合。这可以从表示学习的观点来解释,我们相信学习的问题包含
R-CNN 的全连接层的相同架构。5.5 深度残差网络He 等人 (2015) 提出的残差网络 (ResNet) 由 152 层组成。ResNet 具有较低的误差,并且容易通过残差学习进行训练。更深层次的 ResNet 可以获得更好的性能。在深度学习领域,人们认为 ResNet 是一个重要的进步。5
我们看到PCA算法提供了一种压缩数据的方式。我们也可以将PCA视为学习数据表示的无监督学习算法。这种表示基于上述简单表示的两个标准。PCA学习一种比原始输入低维的表示。它也学习了一种元素之间彼此没有线性相关的表示。这是学习表示中元素统计独立标准的第一步。要实现完全独立性,表示学习算法必须也去掉变量间的非线性关系。PCA将输入
深度学习1. TensorFlow星标:149000,提交数:97741,贡献者:754TensorFlow是针对机器学习的端对端开源平台。它具备综合灵活的工具、库和社区资源,可以帮助研究者推动先进的机器学习技术的发展以及开发者更轻松地开发和发布由机器学习支持的应用。2. Ker
几乎所有的深度学习算法都用到了一个非常重要的算法:随机梯度下降 (stochastic gradient descent, SGD)。随机梯度下降是第4.3节介绍的梯度下降算法的一个扩展。机器学习中的一个循环问题是大的数据集是好的泛化所必要的,但大的训练集的计算代价也更大。机器学
持不变,还必须掌握对特定对象(如移动身体的部分)保持不变的因素。因此根据流形正切分类器提出的算法相当简单:(1)使用自编码器通过无监督学习来学习流形的结构,以及(2)如正切传播(式 (7.67) )一样使用这些切面正则化神经网络分类器。
当然会由于减小训练误差而得到足够的好处,以抵消其带来的训练误差和测试误差间差距的增加。随着数据集的规模迅速增长,超越了计算能力的增速,机器学习应用每个样本只使用一次的情况变得越来越常见,甚至是不完整地使用训练集。在使用一个非常大的训练集时,过拟合不再是问题,而欠拟合和计算效率变成了主要的顾虑。读者也可以参考
大脑。1956年,FrankRosenblatt发明了最早的神经网络-权重加权感知机Perceptron,它可以通过权值调整输出,模拟人类学习过程。1960年,MinskyandPapert的“Perceptrons”认为此类神经网络有许多限制(如无法解决复杂分类任务和把线性不可
对于如何处理估计不确定性的这个问题,贝叶斯派的答案是积分,这往往会防止过拟合。积分当然是概率法则的应用,使贝叶斯方法容易验证,而频率派机器学习基于相当特别的决定构建了一个估计,将数据集里的所有信息归纳到一个单独的点估计。贝叶斯方法和最大似然方法的第二个最大区别是由贝叶斯先验分布造
取得绝对的最小值(相对所有其他值)的点是全局最小点 (globalminimum)。函数可能只有一个全局最小点或存在多个全局最小点,还可能存在不是全局最优的局部极小点。在深度学习的背景下,我们优化的函数可能含有许多不是最优的局部极小点,或许多被非常平坦的区域包围的鞍点。尤其是当输入是多维的时候,所有这些都将使优化变得困难。因此,我们通常寻找
(Neal, 1996)比Dropout表现得更好 (Srivastava et al., 2014)。当有其他未分类的数据可用时,无监督特征学习也比Dropout更有优势。
富,越来越多的人开始关注这个“崭新”的研究领域:深度学习。深度学习以神经网络为主要模型,一开始用来解决机器学习中的表示学习问题。但是由于其强大的能力,深度学习越来越多地用来解决一些通用人工智能问题,比如推理、决策等。目前,深度学习技术在学术界和工业界取得了广泛的成功,受到高度重视