内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 人工智能、机器学习深度学习的关系

    )领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法和手段;或者我们可以将“深度学习”称之为“改良版的神经网络”算法。深度学习又分为卷积神经网络(Convolutional neural networks,简称CNN)和深度置信网(Deep

    作者: 我的老天鹅
    1923
    23
  • 深度学习的华为实践之路

    来自华为云BU的技术规划负责人方帆给大家介绍了华为AI技术储备现状,以及华为深度学习技术在公司内部的创新与实践。

    播放量  24143
  • 深度学习入门》笔记 - 19

    如果没有激活函数,神经网络会变成什么呢? 答案是如果没有激活函数,那么无论神经网络的结构有多复杂,它都将退化为一个线性模型。现实的回归问题或者分类问题的决策边界通常都是复杂且非线性的。这要求模型具有产生复杂的非线性决策边界的能力,在这一点上激活函数在神经网络中扮演了非常重要的角色

    作者: 黄生
    33
    1
  • 深度学习入门》笔记 - 03

    接下来是概率论的一些基本的概念。 `随机变量`就是一个取值不确定的变量。 这个在工作生活中应用的实在是太广泛了。比如老板问你这件事情明天能不能搞完?一般情况下,你的回答可能就是一个随机变量。 随机变量可以分为两种类型:连续型和离散型。 `随机变量的分布`用来描述随机变量出现某种结果的可能性。可以用一些分布函数来表示。

    作者: 黄生
    30
    0
  • 深度学习笔记之矩阵

            矩阵是二维数组,其中的每一个元素被两个索引而非一个所确定。我们通常会赋予矩阵粗体的大写变量名称,比如A。如果一个实数矩阵高度为m,宽度为n,那么我们说A ∈ R m*n。我们在表示矩阵中的元素时,通常使用其名称以不加粗的斜体形式,索引用逗号间隔。比如,A1;1 表示A

    作者: 小强鼓掌
    730
    2
  • 深度学习之参数共享

    这种方法由Lasserre et al. (2006) 提出,正则化一个模型(监督模式下训练的分类器)的参数,使其接近另一个无监督模式下训练的模型(捕捉观察到的输入数据的分布)的参数。这种构造架构使得许多分类模型中的参数能与之对应的无监督模型的参数匹配。参数范数惩罚是正则化参数使

    作者: 小强鼓掌
    824
    2
  • 深度学习之切面距离

    一个利用流形假设的早期尝试是切面距离(tangent distance)算法 (Simard et al., 1993, 1998)。它是一种非参数的最近邻算法,其中使用的度量不是通用的欧几里德距离,而是根据邻近流形关于聚集概率的知识导出的。这个算法假设我们尝试分类的样本和同一流

    作者: 小强鼓掌
    424
    1
  • 深度学习之参数共享

    这种方法由Lasserre et al. (2006) 提出,正则化一个模型(监督模式下训练的分类器)的参数,使其接近另一个无监督模式下训练的模型(捕捉观察到的输入数据的分布)的参数。这种构造架构使得许多分类模型中的参数能与之对应的无监督模型的参数匹配。参数范数惩罚是正则化参数使

    作者: 小强鼓掌
    931
    1
  • 深度学习之约束优化

    有时候,在 x 的所有可能值下最大化或最小化一个函数 f(x) 不是我们所希望的。相反,我们可能希望在 x 的某些集合 S 中找 f(x) 的最大值或最小值。这被称为约束优化 (constrained optimization)。在约束优化术语中,集合 S 内的点 x 被称为可行

    作者: 小强鼓掌
    834
    5
  • 深度学习之流形假设

    第一个支持流形假设 (manifold hypothesis) 的观察是现实生活中的图像,文本,声音的概率分布都是高度集中的。均匀的噪扰从来没有和这类领域的结构化输入相似过。显示均匀采样的点看上去像是没有信号时模拟电视上的静态模式。同样,如果我们均匀地随机抽取字母来生成文件,能有

    作者: 小强鼓掌
    1140
    1
  • 深度学习入门》笔记 - 23

    在实际中训练误差常常偏小, 不是模型真实误差的好的估计值。这是因为如果考试题目是我们做过的作业题,那么我们更容易得高分。所以我们要有一些测试数据是不要参加模型训练的,需要搁置在一旁,直到模型完全建立好,再用来计算模型的测试误差。模型的预测效果较差,经常是由于两类问题导致的。那就是

    作者: 黄生
    29
    2
  • 深度学习之对抗训练

    在许多情况下,神经网络在独立同分布的测试集上进行评估已经达到了人类表现。因此,我们自然要怀疑这些模型在这些任务上是否获得了真正的人类层次的理解。为了探索网络对底层任务的理解层次,我们可以探索这个模型错误分类的例子。 Szegedy et al. (2014b) 发现,在精度达到人

    作者: 小强鼓掌
    623
    2
  • 深度学习之对抗训练

    在许多情况下,神经网络在独立同分布的测试集上进行评估已经达到了人类表现。因此,我们自然要怀疑这些模型在这些任务上是否获得了真正的人类层次的理解。为了探索网络对底层任务的理解层次,我们可以探索这个模型错误分类的例子。 Szegedy et al. (2014b) 发现,在精度达到人

    作者: 小强鼓掌
    842
    1
  • 深度学习入门》笔记 - 06

    下面是一个简单的例子来介绍线性回归模型。 数据是在多个市场的3个不同渠道的广告投入以及商品销量。 这个模型的意义也就很明白了,那就是找出在这3个不同渠道广告投入与最终的商品销量之间的关系。 先把数据可视化: ```python %config InlineBackend.figure_format='retina'

    作者: 黄生
    45
    2
  • 深度学习将无所不能”

    突然打破了这个天花板,他们惊人地超出了10.8个百分点,赢得了比赛。那个教授便是杰弗里·辛顿,他们使用的技术叫做深度学习。自20世纪80年代以来,辛顿一直致力于深度学习的研究工作,由于缺乏数据和计算能力,其有效性受到了限制,一直到2012年才取得成果。辛顿对这项技术的坚定信念最终

    作者: 运气男孩
    721
    1
  • 深度学习之架构设计

    我们还可能出于统计原因来选择深度模型。任何时候,当我们选择一个特定的机器学习算法时,我们隐含地陈述了一些先验,这些先验是关于算法应该学得什么样的函数的。选择深度模型默许了一个非常普遍的信念,那就是我们想要学得的函数应该涉及几个更加简单的函数的组合。这可以从表示学习的观点来解释,我们相信学习的问题包含

    作者: 小强鼓掌
    328
    0
  • 深度学习历史

    Some sources point out that Frank Rosenblatt developed and explored all of the basic ingredients of the deep learning systems of today

    作者: liupanccsu
    发表时间: 2022-08-04 01:52:38
    166
    0
  • 昇腾学院深度学习直播笔记

    跃,打破桎梏,真正进入了深度学习的时代。 · 更深还是更宽?:变深比较重要,变宽没那么重要。增宽的学习效率是线性增长,而加深的学习效率是几何式增长。有论文论证了深度的重要作用。 · 新手入门的推荐方法:网上找来代码去跑通。先熟悉/找感觉,再进行更多的学习。 · 训练方法的变化:随机梯度下降/设置学习率。

    作者: 某地瓜
    1140
    1
  • 深度学习已经取得的进展

    虽然深度学习是机器学习一个相当有年头的分支领域,但在 21 世纪前十年才崛起。在随后的几年里,它在实践中取得了革命性进展,在视觉和听觉等感知问题上取得了令人瞩目的成果,而这些问题所涉及的技术,在人类看来是非常自然、非常直观的,但长期以来却一直是机器难以解决的。特别要强调的是,深度

    作者: ypr189
    827
    1
  • 分享关于深度学习Python库

    深度学习1. TensorFlow星标:149000,提交数:97741,贡献者:754TensorFlow是针对机器学习的端对端开源平台。它具备综合灵活的工具、库和社区资源,可以帮助研究者推动先进的机器学习技术的发展以及开发者更轻松地开发和发布由机器学习支持的应用。2. Ker

    作者: 初学者7000
    1071
    2