检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.909)
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.910)
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.911)
件夹中。 下载完成后,将数据上传至SFS相应目录中。由于数据集过大,推荐先通过obsutil工具将数据集传到OBS桶后,再将数据集迁移至SFS。 在本机机器上运行,通过obsutil工具将本地数据集传到OBS桶。 # 将本地数据传至OBS中 # ./obsutil cp ${数据集所在的本地文件夹路径}
Server适配LlamaFactory PyTorch NPU训练指导(6.3.911) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练benchmark工具 训练脚本说明 附录:训练常见问题 父主题: LLM大语言模型训练推理
Server适配LlamaFactory PyTorch NPU训练指导(6.3.910) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练benchmark工具 训练脚本说明 附录:训练常见问题 父主题: LLM大语言模型训练推理
Server适配LlamaFactory PyTorch NPU训练指导(6.3.912) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练benchmark工具 训练脚本说明 附录:训练常见问题 父主题: LLM大语言模型训练推理
GPU推理业务迁移至昇腾的通用指导 简介 昇腾迁移快速入门案例 迁移评估 环境准备 模型适配 精度校验 性能调优 迁移过程使用工具概览 常见问题 推理业务迁移评估表 父主题: GPU业务迁移至昇腾训练推理
WebSocket客户端和服务端双向传输数据 WebSocket连接的建立 打开Postman(需选择8.5 以上版本,以10.12.0为例)工具,单击左上角,选择“File>New”,弹出新建对话框,选择“WebSocket Request”(当前为beta版本)功能: 图3 选择WebSocket
Standard是面向AI开发者的一站式开发平台,提供了简洁易用的管理控制台,包含自动学习、数据管理、开发环境、模型训练、模型管理、部署上线等端到端的AI开发工具链。 Standard的自动学习可以帮助用户零代码构建AI模型。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模
通过JupyterLab在线使用Notebook实例进行AI开发 通过PyCharm远程使用Notebook实例 通过VS Code远程使用Notebook实例 通过SSH工具远程使用Notebook 管理Notebook实例 使用CodeLab免费体验Notebook ModelArts CLI命令参考 在Notebook中使用Moxing命令
在“运行时长控制”选择是否指定运行时长。 不限时长:不限制作业的运行时长,AI Gallery工具链服务部署完成后将一直处于“运行中”。 指定时长:设置作业运行几小时后停止,当AI Gallery工具链服务运行时长达到指定时长时,系统将会暂停作业。时长设置不能超过计算资源的剩余额度。 说明:
# 构建最终容器镜像 FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 # 安装 vim和curl 工具(依然使用华为开源镜像站) RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak
在“运行时长控制”选择是否指定运行时长。 不限时长:不限制作业的运行时长,AI Gallery工具链服务部署完成后将一直处于“运行中”。 指定时长:设置作业运行几小时后停止,当AI Gallery工具链服务运行时长达到指定时长时,系统将会暂停作业。时长设置不能超过计算资源的剩余额度。 说明:
Gallery中的AI应用 使用AI Gallery微调大师训练模型 使用AI Gallery在线推理服务部署模型 Gallery CLI配置工具指南 计算规格说明
“点击上传”或拖动文件,单击“确认上传”启动上传。 上传单个超过5GB的文件时,请使用Gallery CLI工具。CLI工具的获取和使用请参见Gallery CLI配置工具指南。 文件合集大小不超过50GB。 文件上传完成前,请不要刷新或关闭上传页面,防止意外终止上传任务,导致数据缺失。
tput_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,将trainer_log.jsonl文件长传至可视化工具页面,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练
tput_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,将trainer_log.jsonl文件长传至可视化工具页面,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练
tput_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,将trainer_log.jsonl文件长传至可视化工具页面,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练
表1 不同模型推荐的参数与NPU卡数设置 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具 (Deepspeed) 规格与节点数 Qwen-VL Qwen-VL 7B full 2048 gradient_accumulation_steps: