检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Lite云侧推理模型进行基准测试。它不仅可以对MindSpore Lite云侧推理模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 精度测试 benchmark工具用于精度验证,主要工作原理是:固定模型的输入,通过benchmark
for 'x:/xxx.pem' are too open”如何解决? 问题现象 原因分析 原因分析一:密钥文件未放在指定路径,详情请参考安全限制或VS Code文档。请参考解决方法一处理。 原因分析二:当操作系统为macOS/Linux时,可能是密钥文件或放置密钥的文件夹权限问题,请参考解决方法二处理。
for 'x:/xxx.pem' are too open”如何解决? 问题现象 原因分析 原因分析一:密钥文件未放在指定路径,详情请参考安全限制或VS Code文档。请参考解决方法一处理。 原因分析二:当操作系统为macOS/Linux时,可能是密钥文件或放置密钥的文件夹权限问题,请参考解决方法二处理。
精度调优总体思路 精度问题定位首先要能在昇腾环境上稳定地复现问题,这样才可以在该异常场景下进行针对性分析。大模型训练通常使用多机训练,多机训练的问题复现成本通常较高,且难以直接Dump分析(例如直接使用精度工具采集整网Tensor信息可能会产生TB级的Dump数据,存储和复制都比较困
具可以有效减少人工分析profiling的耗时,降低性能调优的门槛,帮助客户快速识别性能瓶颈点并完成性能优化。推荐用户在采集profiling分析后使用自动诊断工具进行初步性能调优。更进一步的性能调优再使用Ascend-Insight工具进行数据可视化并人工分析瓶颈点。详细信息,
本章节提供了推理服务访问公网的方法。 应用场景 推理服务访问公网地址的场景,如: 输入图片,先进行公网OCR服务调用,然后进行NLP处理; 进行公网文件下载,然后进行分析; 分析结果回调给公网服务终端。 方案设计 从推理服务的算法实例内部,访问公网服务地址的方案。如下图所示: 图1 推理服务访问公网 步骤一:ModelArts专属资源池打通VPC
AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。 AI开发的基本流程 AI开发的基本流程通常
创建自动学习项目有个数限制吗? ModelArts自动学习,包括图像分类项目、物体检测项目、预测分析项目、声音分类和文本分类项目。您最多只能创建100个自动学习项目。 父主题: 创建项目
单击“特征分析”,在弹窗中选择刚才发布的数据集版本,并单击“确定”,启动特征分析任务。 图3 启动特征分析 查看任务进度 任务执行过程中,可以单击“任务历史”,查看任务进度。当任务状态变为“成功”时,表示任务执行完成。 图4 特征分析任务进度 查看特征分析结果 特征分析任务执行完
runtime is found,using CUDA_HOME='/usr/local/cuda'。 原因分析 从日志报错信息No CUDA runtime is found分析,是cuda runtime没有找到。 处理方法 建议您按以下步骤排查处理: 确认部署在线服务时是否选择了GPU规格。
使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments... 图1 在线服务报错 原因分析 根据报错日志分析,模型目录下存在多余文件“/home/mind/model/v0432/cdn_short.pt”。 处理方法 在模型目录中删除“
在线服务预测报错DL.0105,报错日志:“TypeError:‘float’object is not subscriptable”。 原因分析 根据报错日志分析,是因为一个float数据被当做对象下标访问了。 处理方法 将模型推理代码中的x[0][i]修改为x[i],重新部署服务进行预测。
视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。
视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。
视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。
及对本地大规格存储盘的要求容易导致分析受阻。基于本章节的分析插件,自动串联高性能挂载OBS至ModelArts环境(秒级)和advisor分析,免去数据下载耗时的同时还提升了挂载文件的读取速度,加快了advisor分析速度。 父主题: 基于advisor的昇腾训练性能自助调优指导
视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。
I模型的训练和部署。依据开发者提供的标注数据及选择的场景,无需任何代码开发,自动生成满足用户精度要求的模型。可支持图片分类、物体检测、预测分析、声音分类等场景。可根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型。 费用说明:本案例使用过程中,从AI Galle
age进行计算维度的分析,因此在Advanced Setting中设置分析进程为2(不建议设置太大,避免占用过多CPU资源导致OOM类问题)使能并行分析,加快分析速度,如下图4所示。 图4 基于performance advisor进行性能劣化分析 完成分析后单击下图图5中vie
在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,VS Code打开后未进行远程连接 若本地为Linux系统,见原因分析二。 原因分析一 自动安装VS Code插件ModelArts-HuaweiCloud失败。 解决方法一 方法一:检查VS Code网络是否正常。在VS