检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
解绑EIP(1.0.6) 功能介绍 当无需继续使用EIP时,您可通过解绑EIP来释放网络资源。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。
Cypher查询可以借助hasLabel为True的索引来加速。 indexProperty为空时,建立的索引为label索引,可以加速label过滤。 indexProperty不为空时,建立的索引为属性索引,可以加速对应的属性过滤。
适用场景 任意网络。
该接口支持对多跳过滤查询,循环执行遍历查询进行加速。
算法名称:带过滤的n_paths 英文名称:filtered_n_paths 应用场景 任意网络。 请求参数 表1 body体格式 字段名 是否必选 类型 说明 algorithmName 是 String 对应值为“filtered_n_paths”。
区域(Region):从地理位置和网络时延维度划分,同一个Region内共享弹性计算、块存储、对象存储、VPC网络、弹性公网IP、镜像等公共服务。
适用场景 全最短路径算法(All Shortest Paths)适用于路径设计、网络规划等场景。
Cypher查询可以借助hasLabel为True的索引来加速。 indexProperty为空时,建立的索引为label索引,可以加速label过滤。 indexProperty不为空时,建立的索引为属性索引,可以加速对应的属性过滤。
网络 在网络页面,您可以根据节点和网卡名称浏览指定节点的网络资源实时消耗情况。其中包括:节点名称、网卡名称、网卡状态、接收丢包数、接收速率(KB/s)、发送速率(KB/s)和网络监控情况等。
Node2vec算法 概述 Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。
图数据模型中的点代表实体,如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 图数据模型中的边代表关系,如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。
如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 边 图数据模型中的边代表关系。如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。
适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控、交通路网、城市规划等领域 参数说明 表1 Betweenness Centrality算法参数说明 参数 是否必选 说明 类型 取值范围 默认值 directed 否 是否考虑边的方向
在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。
企业IT应用 网络&IT基础设备规模庞大、结构复杂,帮助客户深入了解设备状态、设备之间的关系,实现全网络设备智能监控与管理。 该场景能帮助您实现以下功能。 合理规划网络 快速确定故障节点对网络的影响,并在最依赖的节点周围推荐备用路由,在新节点的规划时,精准规划网络位置。
适用场景 关联路径算法(n-Paths)适用于关系分析、路径设计、网络规划等场景。
适用场景 适用于关系挖掘、路径规划、网络规划等场景。
适用场景 带一般过滤条件的环路检测(filtered circle detection)算法适用于金融风控中循环转账检测、反洗钱,网络路由中异常链接检测,企业担保圈贷款风险识别等场景。
适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别,城市热点事件\早晚高峰人群车辆迁徙发生时关键路段的模拟;适用于社交、金融风控、交通路网、城市规划等领域 参数说明 表1 OD-betweenness Centrality算法参数说明 参数 是否必选