检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用本地IDE远程SSH连接ModelArts的Notebook开发环境时,需要用到密钥对进行鉴权认证。同时支持白名单访问控制,即设置允许远程接入访问这个Notebook的IP地址。 父主题: 安全
s的Notebook开发环境中,调试和运行代码。 对于使用本地IDE的开发者,由于本地资源限制,运行和调试环境大多使用团队公共搭建的资源服务器,并且是多人共用,这带来一定的环境搭建和维护成本。 而ModelArts的Notebook的优势是即开即用,它预先装好了不同的AI引擎,并
Turbo,最后输入PV名称。 接下来需要通过访问集群节点,挂载SFS Turbo。 可通过ssh登录CCE集群中的某个节点(ssh使用的是eip地址)。 创建/mnt/sfs_turbo目录作为挂载目录 ,命令为:mkdir /mnt/sfs_turbo SFS Turbo存储手动挂载到安装节点中,挂载命令如下截图:
Turbo,最后输入PV名称。 接下来需要通过访问集群节点,挂载SFS Turbo。 可通过ssh登录CCE集群中的某个节点(ssh使用的是eip地址)。 创建/mnt/sfs_turbo目录作为挂载目录 ,命令为:mkdir /mnt/sfs_turbo SFS Turbo存储手动挂载到安装节点中,挂载命令如下截图:
Turbo,最后输入PV名称。 接下来需要通过访问集群节点,挂载SFS Turbo。 可通过ssh登录CCE集群中的某个节点(ssh使用的是eip地址)。 创建/mnt/sfs_turbo目录作为挂载目录 ,命令为:mkdir /mnt/sfs_turbo SFS Turbo存储手动挂载到安装节点中,挂载命令如下截图:
Turbo,最后输入PV名称。 接下来需要通过访问集群节点,挂载SFS Turbo。 可通过ssh登录CCE集群中的某个节点(ssh使用的是eip地址)。 创建/mnt/sfs_turbo目录作为挂载目录 ,命令为:mkdir /mnt/sfs_turbo SFS Turbo存储手动挂载到安装节点中,挂载命令如下截图:
为例,修改多机config.yaml模板中的${command}命令如下。多机启动需要在每个节点上执行。MASTER_ADDR为当前ssh远程主机的IP地址(私网IP)。 # 多机执行命令为:ascendfactory-cli train <cfgs_yaml_file> <model_name>
learning时,均需要替换为此处实际创建的组织名称。 单击右上角“登录指令”,获取登录访问指令。以root用户登录ECS环境,输入登录指令。 图1 在ECS中执行登录指令 登录SWR后,使用docker tag命令给上传镜像打标签。下面命令中的组织名称deep-learning,请替换为a
启动入口文件run.sh需要自定义。示例如下: #!/bin/bash # 自定义脚本内容 ... # run.sh调用app.py启动服务器,app.py请参考https示例 python app.py 除了按上述要求设置启动命令,您也可以在镜像中自定义启动命令,在创建模型时填写与您镜像中相同的启动命令。
度生成多个token,可以降低时延。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址,默认为None,举例:参数可以设置为0.0.0.0。 --port:服务部署的端口。 --gpu-memory-utilization
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请参考主流开源大模型基于Lite
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请参考主流开源大模型基于Lite
duler-steps个token。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址,默认为None,举例:参数可以设置为0.0.0.0。 --port:服务部署的端口。 --gpu-memory-utilization
启动入口文件run.sh需要自定义。示例如下: #!/bin/bash # 自定义脚本内容 ... # run.sh调用app.py启动服务器,app.py请参考https示例 python app.py 除了按上述要求设置启动命令,您也可以在镜像中自定义启动命令,在创建模型时填写与您镜像中相同的启动命令。
该参数,否则会导致投机推理启动报错。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址,默认为None,举例:参数可以设置为0.0.0.0。 --port:服务部署的端口。 --gpu-memory-utilization
|── alpaca_gpt4_data.json # 微调数据文件 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请参考主流开源大模型基于Lite
|── alpaca_gpt4_data.json # 微调数据文件 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账
device)) img_secs.append(img_sec) # Results img_sec_mean = np.mean(img_secs) img_sec_conf = 1.96 * np.std(img_secs) log('Img/sec per %s:
input String 表格数据集,HDFS路径。例如/datasets/demo。 ip String 用户GaussDB(DWS)集群的IP地址。 port String 用户GaussDB(DWS)集群的端口。 queue_name String 表格数据集,DLI队列名。 subnet_id