检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
n目录中,代码目录结构如下: benchmark_eval ├── config │ ├── config.json # 服务的配置模板,已配置了ma-standard,tgi示例 │ ├── mmlu_subject_mapping.json # mmlu数据集学科信息
声明式,通过定义资源YAML格式的文件来操作对象。 首先给出单个节点训练的config.yaml文件模板,用于配置pod。而在训练中,需要按照参数说明修改${}中的参数值。该模板使用SFS Turbo挂载方案。 apiVersion: v1 kind: ConfigMap metadata:
数据格式化时使用的前缀。 instruction_template String 数据格式化时使用的指令模板。 response_template String 数据格式化时使用的回答模板。 lora_alpha int Lora scaling的alpha参数。 lora_dropout
AlpacaStyleInstructionHandler:使用LLama-Factory模板Alpaca数据集 SharegptStyleInstructionHandler:使用LLama-Factory模板Sharegpt数据集 micro-batch-size 1 表示流水线并行中一个micro
AlpacaStyleInstructionHandler:使用LLama-Factory模板Alpaca数据集 SharegptStyleInstructionHandler:使用LLama-Factory模板Sharegpt数据集 MBS 4 表示流水线并行中一个micro batch所
"output": "模型回答(必填)", } ] 训练数据构造:在 _filter 函数中会使用 Alpaca 微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中
"output": "模型回答(必填)", } ] 训练数据构造:在 _filter 函数中会使用 Alpaca 微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中
"output": "模型回答(必填)", } ] 训练数据构造:在 _filter 函数中会使用 Alpaca 微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中
--num-scheduler-steps=8 \ --quantization=${quantization} \ --trust-remote-code 多模态推理服务启动模板参数说明如下(其余参数设置参考4.2启动推理服务基础参数说明): VLLM_IMAGE_FETCH_TIMEOUT:图片下载时间环境变量。
"output": "模型回答(必填)", } ] 训练数据构造:在 _filter 函数中会使用 Alpaca 微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中
"output": "模型回答(必填)", } ] 训练数据构造:在 _filter 函数中会使用 Alpaca 微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中
"output": "模型回答(必填)", } ] 训练数据构造:在 _filter 函数中会使用 Alpaca 微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中
AlpacaStyleInstructionHandler:使用LLama-Factory模板Alpaca数据集 SharegptStyleInstructionHandler:使用LLama-Factory模板Sharegpt数据集 micro-batch-size 4 表示流水线并行中一个micro
训练作业找不到GPU 问题现象 训练作业运行出现如下报错: failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected 原因分析 根据错误信息判断,报错原因为训练作业运行程序读取不到GPU。
用户自定义镜像自建的conda环境会查到一些额外的包,影响用户程序,如何解决? 问题现象 用户的自定义镜像运行在Notebook里会查到一些额外的pip包。如下图所示,左侧为自定义镜像运行在本地环境,右侧为运行在Notebook里。 可能原因 Notebook自带moxing、m
status 否 String 工作流状态。 labels 否 String 工作流标签。 template_id 否 String 工作流模板ID。 limit 否 String 分页参数limit,表示单次查询的条目数上限。假如要查询20~29条记录,offset为20,limit为10。
置为0.8或者0.9。 “训练集比例”即用于训练模型的样本数据比例;“验证集比例”即用于验证模型的样本数据比例。“训练验证比例”会影响训练模板的性能。 “描述” 针对当前发布的数据集版本的描述信息。 “开启难例属性” 仅“图像分类”和“物体检测”类型数据集支持难例属性。 默认不开
tebook中,默认工作目录/home/ma-user/work/。 Dockerfile文件的具体内容请参见附录1:Dockerfile模板。模型包文件需要用户自己准备,样例内容请参见附录2:模型包文件样例。 图2 上传dockerfile文件和模型包文件 打开Terminal终端,解压model
日志提示"write line error" 问题现象 在程序运行过程中,刷出大量错误日志“[ModelArts Service Log]modelarts-pipe: write line error”。并且问题是必现问题,每次运行到同一地方的时候,出现错误。 原因分析 出现该问题的可能原因如下:
准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍