检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何在Notebook中安装外部库? ModelArts Notebook中已安装Jupyter、Python程序包等多种环境,包括TensorFlow、MindSpore、PyTorch、Spark等。您也可以使用pip install在Notobook或Terminal中安装外部库。
实例时创建并保存的密钥对文件。 单击将连接重命名,可以自定义一个便于识别的名字,单击OK。 配置完成后,单击Test Connection测试连通性。 选择Yes,显示Successfully connected表示网络可以连通,单击OK。 在最下方再单击OK保存配置。 图2 配置SSH
BASE_IMAGE=${base_image} . 注意:nerdctl build会去镜像仓库拉取镜像,不会直接使用本地镜像。构建前可以使用nerdctl pull命令拉取测试镜像,查看是否能拉取成功。 <镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_1_ascend:20240606。 ${base_image}为基础镜像地址。
与云容器引擎的关系 ModelArts使用云容器引擎(Cloud Container Engine,简称CCE)部署模型为在线服务,支持服务的高并发和弹性伸缩需求。CCE的更多信息请参见《云容器引擎用户指南》。 与容器镜像服务的关系 当使用ModelArts不支持的AI框架构建模型时,
Multi-step 一次调度多次推理,降低调度上的cpu-overhead。 量化 W4A16-AWQ、GPTQ 权重Int4量化,降低显存消耗和时延。小并发时延提升80%,精度损失2%以内。 W8A8-smoothQuant 权重Int8量化,降低显存消耗,吞吐提升30%;精度损失1.5%以内。
专属模型。 调优模型:使用不同的调优参数去训练模型。 部署模型服务:将调优后的模型部署成模型服务。 使用模型服务:在MaaS体验模型服务,测试推理结果。 结果分析:分析模型的调优结果和推理结果,对比新闻分类效果。 方案优势 高准确性:利用模型强大的语义理解能力,系统能够准确识别新
产厂商提供了一整套安全可靠的一站式部署方式。 在线服务 在线推理服务,可以实现高并发,低延时,弹性伸缩,并且支持多模型灰度发布、A/B测试。将模型部署为一个Web Service,并且提供在线的测试UI与监控能力。 发布区域:华北-北京一、华北-北京四、华北-乌兰察布一、华东-上
如何在ModelArts的Notebook的CodeLab上安装依赖? ModelArts CodeLab中已安装Jupyter、Python程序包等多种环境,您也可以使用pip install在Notebook或Terminal中安装依赖包。 在Notebook中安装 在总览页面进入CodeLab。
户”。管理员不做权限控制,此处默认使用普通用户委托即可。 勾选“我已经详细阅读并同意《 ModelArts服务声明 》”,单击“创建”。 测试管理员用户权限。 使用管理员用户登录ModelArts管理控制台。在登录页面,请使用“IAM用户登录”方式进行登录。 首次登录会提示修改密码,请根据界面提示进行修改。
动容器时定义。 maxPrefillBatchSize:最大prefill batch size。config.json文件中默认是50,并发请求数量超出设置,推理请求会被拒绝。用户可以根据实际修改。maxPrefillBatchSize和maxPrefillTokens谁先达到各自的取值就完成本次组batch。
预计时长4分钟左右。 图3 服务部署成功 步骤四:预测结果 在线服务部署完成后,单击“预测”页签。 在“预测”页签,单击“上传”,上传一个测试图片,单击“预测”查看预测结果。此处提供一个样例图片供预测使用。 本案例中使用的订阅模型可以识别81类常见超市商品,模型对预测图片有一定范
GP Vnt1裸金属服务器用PyTorch报错CUDA initialization:CUDA unknown error 问题现象 在Vnt1 GPU裸金属服务器(Ubuntu18.04系统),安装NVIDIA 470+CUDA 11.4后使用“nvidia-smi”和“nvcc
可能为多个进程或者worker读写同一个文件。如果使用了SFS,则考虑是否多个节点同时写同一个文件。分析代码中是否存在多进程写同一文件的情况。建议避免作业中存在多进程,多节点并发读写同一文件的情况。 检查报错的路径是否为OBS路径 使用ModelArts时,用户数据需要存放在自己OBS桶中,但是训练代码运行过程中不能使用OBS路径读取数据。
--port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号。分离部署对外服务使用的是scheduler实例端口,在后续推理性能测试和精度测试时,服务端口需要和scheduler实例端口保持一致。 --model:HuggingFace下载的官方权重 --max-num-seqs:同时处理的最大句子数量
、图片渲染这些。 如大数据分析、静态网站托管、在线视频点播、基因测序和智能视频监控等。 如高性能计算、企业核心集群应用、企业应用系统和开发测试等。 说明: 高性能计算:主要是高速率、高IOPS的需求,用于作为高性能存储,比如工业设计、能源勘探这些。 容量 PB级别 EB级别 TB级别
--port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号。分离部署对外服务使用的是scheduler实例端口,在后续推理性能测试和精度测试时,服务端口需要和scheduler实例端口保持一致。 --model:HuggingFace下载的官方权重 --max-num-seqs:同时处理的最大句子数量
> aoe_unet2.log 此时,aoe_output下面会有对应的mindir模型,包含了AOE知识库信息。使用benchmark工具测试新生成的mindir模型性能,同AOE调优前的模型进行对比,可以看到模型性能有所提升。 #shell # 调优前命令如下: benchmark
String 微调产物输出OBS路径。 train_data_file String 训练数据文件名。 test_data_file String 测试数据文件名。 prompt_field String 数据prompt列名。 response_field String 数据response列名。
改为步骤6中下载的onnx_models地址“/home_host/work/runwayml/onnx_models”。执行推理脚本进行测试,此处使用的推理硬件是CPU。由于CPU执行较慢,验证待迁移的代码可能需要大约15分钟左右才能完成。 cd modelarts-ascen
(Press CTRL+C to quit) Step7 推理请求 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见表1。 方式一:通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker_ip}替换为实际宿主机的IP地址。${containe