检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练作业的自定义镜像制作流程 如果您已经在本地完成模型开发或训练脚本的开发,且您使用的AI引擎是ModelArts不支持的框架。您可以制作自定义镜像,并上传至SWR服务。您可以在ModelArts使用此自定义镜像创建训练作业,使用ModelArts提供的资源训练模型。 制作流程 图1
型开发使用过程中的技术细节,并制定了统一合理的规范。使用者可以便捷地使用、下载模型。同时支持用户上传自己的预训练模型到在线模型资产仓库中,并发布上架给其他用户使用。AI Gallery在原有Transformers库的基础上,融入了对于昇腾硬件的适配与支持。对AI有使用诉求的企业
4:表格 6:视频 9:自由格式 sample_usage 否 String 样本用处。可选值如下: TRAIN:训练 EVAL:验证 TEST:测试 INFERENCE:推理 source 否 String 样本数据源地址,通过调用样本列表接口获取。 worker_id 否 String
考表2。 usage 否 默认为空,取值范围: TRAIN:指明该对象用于训练。 EVAL:指明该对象用于评估。 TEST:指明该对象用于测试。 INFERENCE:指明该对象用于推理。 如果没有给出该字段,则使用者自行决定如何使用该对象。 id 否 此参数为系统导出的样本id,导入时可以不用填写。
配置Lite Cluster存储 如果没有挂载任何外部存储,此时可用存储空间根据dockerBaseSize的配置来决定,可访问的存储空间比较小,因此建议通过挂载外部存储空间解决存储空间受限问题。 容器中挂载存储有多种方式,不同的场景下推荐的存储方式不一样,详情如表1所示。容器存
Manifest管理概述 在ModelArts使用过程中,需要做数据标注、模型训练、推理、数据集管理、市场发布等业务,这些业务都基于数据集进行的。为了规范对数据集的使用,适配各个使用场景,同时兼顾数据集管理的灵活性,本文档描述数据集管理的接口和描述规范——Manifest文件。
Tensorflow多节点作业下载数据到/cache显示No space left 问题现象 创建训练作业,Tensorflow多节点作业下载数据到/cache显示:“No space left”。 原因分析 TensorFlow多节点任务会启动parameter server(
4:表格 6:视频 9:自由格式 sample_usage String 样本用处。可选值如下: TRAIN:训练 EVAL:验证 TEST:测试 INFERENCE:推理 source String 样本数据源地址,通过调用样本列表接口获取。 worker_id String 团队标注的成员ID。
业务代码问题 日志提示“pandas.errors.ParserError: Error tokenizing data. C error: Expected .* fields” 日志提示“max_pool2d_with_indices_out_cuda_frame failed
4:表格 6:视频 9:自由格式 sample_usage String 样本用处。可选值如下: TRAIN:训练 EVAL:验证 TEST:测试 INFERENCE:推理 source String 样本数据源地址,通过调用样本列表接口获取。 worker_id String 团队标注的成员ID。
使用PyCharm Toolkit插件连接Notebook 由于AI开发者会使用PyCharm工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接N
如何上传数据至OBS? 使用ModelArts进行AI模型开发时,您需要将数据上传至对象存储服务(OBS)桶中。您可以登录OBS管理控制台创建OBS桶,并在您创建的OBS桶中创建文件夹,然后再进行数据的上传,OBS上传数据的详细操作请参见《对象存储服务快速入门》。 您在创建OBS
从容器镜像中导入AI应用文件创建模型 针对ModelArts目前不支持的AI引擎,您可以通过自定义镜像的方式将编写的模型导入ModelArts。 约束与限制 关于自定义镜像规范和说明,请参见模型镜像规范。 针对您开发并训练完成的模型,需要提供对应的模型配置文件,此文件需遵守Mod
查看AI应用详情 查看AI应用列表 当AI应用创建成功后,您可在AI应用列表页查看所有创建的AI应用。AI应用列表页包含以下信息。 表1 AI应用列表 参数 说明 AI应用名称 AI应用的名称。 最新版本 AI应用的当前最新版本。 状态 AI应用当前状态。 部署类型 AI应用支持部署的服务类型。
RPC等多种服务协议,支持TensorFlow、TensorRT、PyTorch、ONNXRuntime等多种推理引擎后端,并且支持多模型并发、动态batch等功能,能够提高GPU的使用率,改善推理服务的性能。 当从第三方推理框架迁移到使用ModelArts推理的AI应用管理和服
常见的磁盘空间不足的问题和解决办法 该章节用于统一整体所有的常见的磁盘空间不足的问题和解决办法。减少相关问题文档的重复内容。 问题现象 训练过程中复制数据/代码/模型时出现如下报错: 图1 错误日志 原因分析 出现该问题的可能原因如下: 本地数据、文件保存将"/cache"目录空间用完。
使用前必读 在调用ModelArts API之前,请确保已经充分了解ModelArts相关概念,详细信息请参见产品介绍。 ModelArts提供了REST(Representational State Transfer)风格API,支持您通过HTTPS请求调用,调用方法请参见如何调用API。
从OBS中导入AI应用文件创建模型 针对使用常用框架完成模型开发和训练的场景,可以将您的模型导入至ModelArts中,创建为AI应用,并进行统一管理。 约束与限制 针对创建AI应用的模型,需符合ModelArts的模型包规范,推理代码和配置文件也需遵循ModelArts的要求,
ma-cli dli-job提交DLI Spark作业支持的命令 $ma-cli dli-job -h Usage: ma-cli dli-job [OPTIONS] COMMAND [ARGS]... DLI spark job submission and query job
训练前卡死 作业为多节点训练,且还未开始训练时发生卡死,可以在代码中加入os.environ["NCCL_DEBUG"] = "INFO",查看NCCL DEBUG信息。 问题现象1 日志中还未出现NCCL DEBUG信息时已卡死。 解决方案1 检查代码,检查是否有参数中未传入“