检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
的实现,继承想要的通用的父类,实现_filter方法,然后在数据预处理的参数里指定自己的handler名称即可 用户自定义执行数据处理脚本修改参数说明 同样以 llama2 为例,用户可直接编辑 scripts/llama2/1_preprocess_data.sh 脚本,自定义
e”为OBS存放代码路径的最后一级目录,可以根据实际修改。 启动命令:“python ${MA_JOB_DIR}/code/mnist.py” ,此处的“code”为用户自定义的OBS存放代码路径的最后一级目录,可以根据实际修改。 训练输入:单击“增加训练输入”,参数名称设置为“
版本可以不用选择。 task_name:填写需要创建的标注任务名称即可。 说明: 首次运行需要配置,会自动创建新的标注任务,后续不建议进行修改,使用同一个标注任务进行数据标注。 图像分类训练参数配置 算法超参相关的配置,建议直接使用默认值。每个参数的具体含义已在控制台界面输入框下方说明。
服务可能会有违规风险,请谨慎关闭。 关闭“内容审核”开关,需要在弹窗中确认是否停用内容审核服务,勾选后,单击“确定”关闭。 复制调用示例,修改参数后用于业务环境调用模型服务API。 示例代码如下所示: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
系统默认关联您存储在OBS中的配置文件。打开开关,您可以直接在当前界面查看或编辑模型配置文件。 说明: 该功能即将下线,后续请根据“AI引擎”、“运行时依赖”和“apis定义”修改模型的配置信息。 “部署类型” 选择此模型支持部署服务的类型,部署上线时只支持部署为此处选择的部署类型,例如此处只选择在线服务,那您导入后
成验收,此时不允许发起新的验收任务,只能继续完成当前验收任务。 3:通过。团队标注任务已完成。 4:驳回。manager再次启动任务,重新修改标注和审核工作。 5:验收结果同步中。验收任务改为异步,新增验收结果同步中的状态,此时不允许发起新的验收任务,也不允许继续当前验收,任务名称的地方提示用户同步中。
parameters=[] ), # 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值 inputs=wf.steps.JobInput(name="data_url"
通过Token认证的方式访问在线服务 如果在线服务的状态处于“运行中”,则表示在线服务已部署成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。在集成至生产环境之前,需要对此API进行调测,您可以使用以下方式向在线服务发起预测请求: 方
&& \ mv /etc/apt/sources.list.bak /etc/apt/sources.list && \ # 修改 CANN 6.3.RC2 安装目录的父目录权限,使得 ma-user 可以写入 chmod o+w /usr/local RUN
Terminated:已停止 Abnormal:异常 secondary_phase String 训练作业二级状态为内部详细状态,可能会增加、修改、删除,不建议依赖。可选值如下: Creating:创建中 Queuing:排队中 Running:运行中 Failed:运行失败 Completed:已完成
的数据。 图9 查看智能标注任务进度 确认智能标注结果 在智能标注任务完成后,在“待确认”页签下,单击具体图片进入标注详情页面,可以查看或修改智能标注的结果。 如果智能标注的数据无误,可单击右侧的“确认标注”完成标注,如果标注信息有误,可直接删除错误标注框,然后重新标注,以纠正标
华为云技术支持配置完成后,会给您提供对应的OBS桶目录“obs_dir”,该目录用于后续配置的脚本中。 图2 租户名ID和IAM用户名ID 准备日志收集上传脚本。 修改以下脚本中NpuLogCollection的参数,将ak、sk、obs_dir替换为前面步骤中获取到的值,然后把该脚本上传到要收集NPU日志的节点上。
dist pip install torchvision_npu-0.16.*.whl 步骤五:启动容器 启动容器镜像前请先按照参数说明修改${}中的参数。docker启动失败会有对应的error提示,启动成功会有对应的docker id生成,并且不会报错。 docker run
evaluator.py # 数据集数据预处理方法集 ├── model.py # 发送请求的模块,在这里修改请求响应。目前支持vllm.openai,atb的tgi模板 ├── ... ├── eval_test
login Log in using ak sk from huawei cloud iam | │ logout
6.3.907-xxx.zip到宿主机的工作目录中,包获取路径请参见表2。 Step4 启动容器镜像 启动容器镜像。启动前请先按照参数说明修改${}中的参数。 docker run -itd --net=host \ --device=/dev/davinci0 \ --dev
ip_forward配置 docker容器无法正常网络通信 重要 容器共享内存过小 共享内存默认为64M,可按需修改 分布式训练时共享内存不足导致训练失败 方式一: 修改/etc/docker/daemon.json配置文件default-shm-size字段 方式二: docker
1。 docker build -t sdxl-train:0.0.1 . Step4 启动镜像 启动容器镜像。启动前可以根据实际需要增加修改参数。 docker run -itd --name sdxl-train -v /sys/fs/cgroup:/sys/fs/cgroup:ro
训练资源规格:配置计算资源。由于举例的算法只能跑GPU,此处必须配置GPU类型的资源,可使用免费规格(modelarts.p3.large.public.free)。 配置项修改完成后执行如下代码。 workflow.release_and_run() 执行完成后可前往ModelArts管理控制台,在总览页中选择Workflow,查看工作流的运行情况。
zip上传到${workdir}目录下并解压缩,如:/home/ma-user/ws目录下,以下都以/home/ma-user/ws为例,请根据实际修改。 unzip AscendCloud-*.zip 上传tokenizers文件到工作目录中的/home/ma-user/ws/toke