检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
对于牛顿法而言,鞍点显然是一个问题。梯度下降旨在朝“下坡”移动,而非明确寻求临界点。而牛顿法的目标是寻求梯度为零的点。如果没有适当的修改,牛顿法就会跳进一个鞍点。高维空间中鞍点的激增或许解释了在神经网络训练中为什么二阶方法无法成功取代梯度下降。Dauphin et al. (2014)
L2惩罚法也是一个经典的正则化方法。 它是在原有损失函数的基础上,在构造一个新的损失函数。(带有惩罚项 是一个超参数)模型集成(model ensemble)可以提供模型的预测准确度,思想就是, 先训练大量结构不同的模型,通过平均、或投票方式综合所有模型的结构,得到最终预测。在实际中,有较大限制,原因很简单,
关于聚类的一个问题是聚类问题本身是病态的。这是说没有单一的标准去度量聚类的数据对应真实世界有多好。我们可以度量聚类的性质,例如每个聚类的元素到该类中心点的平均欧几里得距离。这使我们可以判断能够多好地从聚类分配中重建训练数据。然而我们不知道聚类的性质多好地对应于真实世界的性质。此外
神经网络模型建立好了之后,必然要进行模型的评估来了解神经网络的表现。 神经网络的因变量通常有两种数据类型,定量数据和定性数据。不同因变量数据类型对应的模型误差的定义也不一样。当因变量为定性数据时,模型误差可以进一步分为两个类型: 假阳性率, FPR False Positive Rate
下面用之前的广告数据,来建立线性回归模型,看看tensorflow2的一般建模过程。import numpy as np #1. 数据预处理:装载广告数据 def loadDataSet(): x=[];y=[] f=open('./Ad.csv')
解决欠拟合问题的方法比较简单,增加模型复杂度就可以了。常见的方法是增加隐藏层的数量或者增加隐藏层的节点数,或者二者同时增加。如果训练误差持续下降,接近于0。而测试误差在下降后变得平稳,甚至略有上升。训练误差和测试误差的差距较大。这就是典型的过拟合情况。在建立神经网络模型的初始阶段
使用Dropout训练时的随机性不是这个方法成功的必要条件。它仅仅是近似所有子模型总和的一个方法。Wang and Manning (2013) 导出了近似这种边缘分布的解析解。他们的近似被称为快速 Dropout(fast dropout),减小梯度计算中的随机性而获得更快的收
参数添加约束或惩罚时,一直是相对于固定的区域或点。例如,L2正则化(或权重衰减)对参数偏离零的固定值进行惩罚。然而,有时我们可能需要其他的方式来表达我们对模型参数适当值的先验知识。有时候,我们可能无法准确地知道应该使用什么样的参数,但我们根据领域和模型结构方面的知识得知模型参数之
```python #定义sigmoid函数 def sigmoid(input): return 1.0/(1+np.exp(-input)) #通过随机梯度下降法估计参数 def logit_model(x,y,w,b,lr=0.1): for iter in range(60):
深度学习 1. 深度学习介绍 2. 深度学习原理 3. 深度学习实现 深度学习 1. 深度学习介绍 深度学习(Deep learning)是机器学习的一个分支领域,其源于人工 神经网络的研究。 深度学习广泛应用在计算机视觉,音频处理,自然语言处理等诸多领 域。 人工神经网络(Artificial
进行文档处理的深度生成模型。6.3 深度信念网络深度信念网络 (Deep Belief Networks, DBN) 是具有多个潜在二元或真实变量层的生成模型。Ranzato 等人 (2011) 利用深度信念网络 (deep Belief Network, DBN) 建立了深度生成模型进行图像识别。6
经网络的基本结构和原理对于深度学习的学习非常重要。 推荐教程: 《神经网络与深度学习》(Neural Networks and Deep Learning)(英)Michael Nielsen 著 三、进阶学习 1.深度学习模型 深度学习模型是深度学习中的核心,包括卷积神经网络、
一个利用流形假设的早期尝试是切面距离(tangent distance)算法 (Simard et al., 1993, 1998)。它是一种非参数的最近邻算法,其中使用的度量不是通用的欧几里德距离,而是根据邻近流形关于聚集概率的知识导出的。这个算法假设我们尝试分类的样本和同一流
矩阵是二维数组,其中的每一个元素被两个索引而非一个所确定。我们通常会赋予矩阵粗体的大写变量名称,比如A。如果一个实数矩阵高度为m,宽度为n,那么我们说A ∈ R m*n。我们在表示矩阵中的元素时,通常使用其名称以不加粗的斜体形式,索引用逗号间隔。比如,A1;1 表示A
有时候,在 x 的所有可能值下最大化或最小化一个函数 f(x) 不是我们所希望的。相反,我们可能希望在 x 的某些集合 S 中找 f(x) 的最大值或最小值。这被称为约束优化 (constrained optimization)。在约束优化术语中,集合 S 内的点 x 被称为可行
这种方法由Lasserre et al. (2006) 提出,正则化一个模型(监督模式下训练的分类器)的参数,使其接近另一个无监督模式下训练的模型(捕捉观察到的输入数据的分布)的参数。这种构造架构使得许多分类模型中的参数能与之对应的无监督模型的参数匹配。参数范数惩罚是正则化参数使
第一个支持流形假设 (manifold hypothesis) 的观察是现实生活中的图像,文本,声音的概率分布都是高度集中的。均匀的噪扰从来没有和这类领域的结构化输入相似过。显示均匀采样的点看上去像是没有信号时模拟电视上的静态模式。同样,如果我们均匀地随机抽取字母来生成文件,能有
如果没有激活函数,神经网络会变成什么呢? 答案是如果没有激活函数,那么无论神经网络的结构有多复杂,它都将退化为一个线性模型。现实的回归问题或者分类问题的决策边界通常都是复杂且非线性的。这要求模型具有产生复杂的非线性决策边界的能力,在这一点上激活函数在神经网络中扮演了非常重要的角色
接下来是概率论的一些基本的概念。 `随机变量`就是一个取值不确定的变量。 这个在工作生活中应用的实在是太广泛了。比如老板问你这件事情明天能不能搞完?一般情况下,你的回答可能就是一个随机变量。 随机变量可以分为两种类型:连续型和离散型。 `随机变量的分布`用来描述随机变量出现某种结果的可能性。可以用一些分布函数来表示。