检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
将Notebook的Conda环境迁移到SFS磁盘 本文介绍了如何将Notebook的Conda环境迁移到SFS磁盘上。这样重启Notebook实例后,Conda环境不会丢失。 步骤如下: 创建新的虚拟环境并保存到SFS目录 克隆原有的虚拟环境到SFS盘 重新启动镜像激活SFS盘中的虚拟环境
rallel.py,具体操作命令如下,可以根据参数说明修改参数。 python benchmark_parallel.py --backend openai --host ${docker_ip} --port ${port} --tokenizer /path/to/tokenizer
Shell功能登录训练作业worker-0实例,使用curl {sfs-turbo-endpoint}:{port}命令检查port是否正常打开,SFS Turbo所需要入方向的端口号为111、445、2049、2051、2052、20048,具体请参见创建文件系统的“安全组”参数。Cloud
容器镜像所在的路径:选择已制作好的自有镜像 图4 选择已制作好的自有镜像 容器调用接口:指定模型启动的协议和端口号。请确保协议和端口号与自定义镜像中提供的协议和端口号保持一致。 镜像复制:选填,选择是否将容器镜像中的模型镜像复制到ModelArts中。 健康检查:选填,用于指定模型的健康检查。仅
tp://${docker_ip}:8080/generate。此处的${docker_ip}替换为宿主机实际的IP地址,端口号8080来自前面配置的服务端口。 few_shot:开启少量样本测试后添加示例样本的个数。默认为3,取值范围为0~5整数。 is_devserver:
l.py,具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools python benchmark_parallel.py --backend vllm --host ${docker_ip} --port 8080 --tokenizer /path/to/tokenizer
l.py,具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools python benchmark_parallel.py --backend vllm --host ${docker_ip} --port 8080 --tokenizer /path/to/tokenizer
容器镜像所在的路径:选择已制作好的自有镜像 图4 选择已制作好的自有镜像 容器调用接口:指定模型启动的协议和端口号。请确保协议和端口号与自定义镜像中提供的协议和端口号保持一致。 镜像复制:选填,选择是否将容器镜像中的模型镜像复制到ModelArts中。 健康检查:选填,用于指定模型的健康检查。仅
执行精度测试启动脚本opencompass.sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ service_port=${service_port} \ max_out_len=${max_out_len}
执行精度测试启动脚本opencompass.sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ service_port=${service_port} \ max_out_len=${max_out_len}
如何将两个ModelArts数据集合并? 目前不支持直接合并。 但是可以参考如下操作方式,将两个数据集的数据合并在一个数据集中。 例如需将数据集A和数据集B进行合并。 分别将数据集A和数据集B进行发布。 发布后可获得数据集A和数据集B的Manifest文件。可通过数据集的“数据集输出位置”获得此文件。
在ModelArts中如何将标注结果下载至本地? ModelArts数据集中的标注信息和数据在发布后,将以manifest格式存储在“数据集输出位置”对应的OBS路径下。 路径获取方式: 在ModelArts管理控制台,进入“数据管理>数据集”。 选择需查看数据集,单击名称左侧小
ndspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口,和推理服务端口8080。 --url:若以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;若以openai接
ndspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口,和推理服务端口8080。 --url:若以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;若以openai接
(Press CTRL+C to quit) Step4 请求推理服务 另外启动一个terminal,使用命令测试推理服务是否正常启动,端口请修改为启动服务时指定的端口。 方式一:使用vLLM接口请求服务,命令参考如下。 curl -X POST http://localhost:8080/generate
则可以跳过此步骤: ssh-keygen -t rsa 将公钥添加到远程服务器的授权文件中,注意替换服务器IP以及容器的端口号: cat ~/.ssh/id_rsa.pub | ssh root@服务器IP -p 容器端口号 "mkdir -p ~/.ssh && cat >>
将模型部署为批量推理服务 模型准备完成后,您可以将模型部署为批量服务。在“模型部署>批量服务”界面,列举了用户所创建的批量服务。 前提条件 数据已完成准备:已在ModelArts中创建状态“正常”可用的模型。 准备好需要批量处理的数据,并上传至OBS目录。 已在OBS创建至少1个空的文件夹,用于存储输出的内容。
确认填写信息无误后,根据界面提示完成在线服务的部署。部署服务一般需要运行一段时间,根据您选择的数据量和资源不同,部署时间将耗时几分钟到几十分钟不等。 在线服务部署完成后,将立即启动。服务为“运行中”,“告警”状态下正常运行实例正在产生费用,不使用时,请及时停止。 您可以前往在线服务列表
将模型部署为实时推理作业 实时推理的部署及使用流程 部署模型为在线服务 访问在线服务支持的认证方式 访问在线服务支持的访问通道 访问在线服务支持的传输协议 父主题: 使用ModelArts Standard部署模型并推理预测
执行精度测试启动脚本opencompass.sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ service_port=${service_port} \ max_out_len=${max_out_len}