检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
setToolId(retrievedTool.getToolId()); final Map<String, Object> toolMetadata = retrievedTool.getToolMetadata(); tool.
对任务的理解,而多样化的数据则帮助模型更好地应对各种情况。因此,数据的收集和处理是大模型训练中的关键环节。 盘古大模型套件平台通过提供数据获取、清洗、配比与管理等功能,确保构建高质量的训练数据。 父主题: 准备盘古大模型训练数据集
路径参数 参数 是否必选 参数类型 描述 project_id 是 String 项目ID,获取方法请参见获取项目ID。 deployment_id 是 String 模型的部署ID,获取方法请参见获取模型调用API地址。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述
子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Agent结合记忆模块中相关的信息以获取最优化任务解决策略。 任务执行:能通过工具与外界发生联系并产生影响,工具可以自定义,包括查询信息、调用服务、网络搜索、文件管理、调用云服务
of("subject", "哈士奇"), KV.of("count", "25")); // 带参数问答 Map<String, Object> inputs = new HashMap<>(); inputs.put("subject", "哈士奇"); inputs.put("count"
getAction()); Object result = tool.runFromJson(currentAction.getActionInput().toString()); // 获取工具结果后,继续模型推理
子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Agent结合记忆模块中相关的信息以获取最优化任务解决策略。 任务执行:能通过工具与外界发生联系并产生影响,工具可以自定义,包括查询信息、调用服务、网络搜索、文件管理、调用云服务
--host-ip=192.168.0.150 cluster_install-ascend.sh脚本主要用于安装docker、hdad和k3s,请联系华为工程师获取。 pkg-path是步骤2中整合的安装包文件目录。 host-ip是设备在集群中的ip,一般为内网ip。 node-type是集群节点类
常见训练报错与解决方案 read example failed报错 报错原因:模型训练过程中,训练日志出现“read example failed”报错,表示当前数据集格式不满足训练要求。 解决方案:请参考数据格式要求校验数据集格式。 图1 read example failed报错
加急购买需求,可在页面右上角单击“工单 > 新建工单”,搜索“盘古大模型”产品,选择问题类型并提交工单。 图1 立即购买 图2 新建工单 获取购买权限后,您可在购买页面选择合适的模型和推理资产,购买盘古大模型套件。 图3 购买盘古大模型套件 对于前期邀测用户,如果未购买模型推理资
审计 云审计服务(Cloud Trace Service,CTS)是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。
HashMap; import java.util.List; import java.util.Map; Map<String, Object> data = new HashMap<>(); data.put("name", "名称name"); data.put("description"
压缩盘古大模型 N2基础功能模型、N4基础功能模型、经有监督微调训练以及RLHF训练后的N2、N4模型可以通过模型压缩技术在保持相同QPS目标的情况下,降低推理时的显存占用。 采用INT8的压缩方式,INT8量化可以显著减小模型的存储大小与降低功耗,并提高计算速度。 模型经过量化
LLMParamConfig llmParamConfig) { // 构造请求体 Map<String, Object> request = new HashMap<>(); request.put("temperature", 0.3);
使用规则构建的优点是快速且成本低,缺点是数据多样性较低。 基于大模型的数据泛化:您可以通过调用大模型(比如盘古提供的任意一个规格的基础功能模型)来获取有监督场景。一个比较常见的方法是,将无监督的文本按照章节、段落、字符数进行切片,让模型基于这个片段生成问答对,再将段落、问题和答案三者组装
科技行业公司的平均利润和市值是多少? 识别原始问题中的槽位: 科技行业公司的[metric]利润和市值是多少? 采用简单的逻辑规则进行替换,获取更多数据。此处将[metric]替换为“最大”、“最小”、“中位”、“总”等,示例如下: 科技行业公司的最大利润和市值是多少? 科技行业公司的最小利润和市值是多少?
Memory(记忆) Memory(记忆)模块结合外部存储为LLM应用提供长短期记忆能力,用于支持上下文记忆的对话、搜索增强等场景。 Memory(记忆)支持多种不同的存储方式和功能。 Cache缓存:是一种临时存储数据的方法,它可以提高数据的访问速度和效率。缓存可以根据不同的存
Memory(记忆) Memory(记忆)模块结合外部存储为LLM应用提供长短期记忆功能,用于支持上下文记忆的对话、搜索增强等场景。 Memory(记忆)支持多种不同的存储方式和功能。 Cache缓存:是一种临时存储数据的方法,它可以提高数据的访问速度和效率。缓存可以根据不同的存
语法结构修改、标点符号替换等,保证数据的多样性。 基于大模型的数据泛化:您可以通过调用大模型(比如盘古提供的任意一个规格的基础功能模型)来获取目标场景的数据,以此提升数据质量。一个比较常见的方法是,将微调数据以及数据评估标准输入给模型,让模型来评估数据的优劣。 人工标注:如果以上
在线问答公开数据、政务百科等。 来源二:特定的私域数据,针对于具体场景和项目需求,收集相关的文本数据。比如通过与当地政府的政数局进行合作,获取政府部门提供的内部脱敏数据等。相关的数据格式包括但不限于:在线网页、离线word文档、离线txt文件、离线excel表格、离线PDF文件、