检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
表2 任务类型支持的AI Gallery工具链服务 任务类型 微调大师 在线推理服务 AI应用 文本问答/文本生成 支持 支持 支持 其他类型 支持 支持 不支持 编辑完成后,单击“确认”保存修改。 管理模型文件 预览文件 在模型详情页,选择“模型文件”页签。
--dtype:模型推理的数据类型。支持FP16和BF16数据类型推理。float16表示FP16,bfloat16表示BF16。如果不指定,则根据输入数据自动匹配数据类型。使用不同的dtype会影响模型精度。
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本
使用Windows下生成的文本文件时报错找不到路径? 创建Notebook文件后,右上角的Kernel状态为“No Kernel”如何处理? 父主题: 开发环境
`gen`模式表示生成rank_table文件,`merge`模式表示合并global rank_table文件。 --save-dir:保存生成的rank_table文件的根目录,默认为当前目录。
gen模式表示生成rank_table文件,merge模式表示合并global rank_table文件。 --save-dir:保存生成的rank_table文件的根目录,默认为当前目录。
--dtype:模型推理的数据类型。支持FP16和BF16数据类型推理。float16表示FP16,bfloat16表示BF16。如果不指定,则根据输入数据自动匹配数据类型。使用不同的dtype会影响模型精度。
SWR OperateAccess 必选 密钥管理服务 当子用户使用ModelArts Notebook的SSH远程功能时,需要配置子用户密钥管理服务的使用权限。
“数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或者生成对某些特定的人们来说是有价值、有意义的数据。“数据处理”又分为“数据校验”、“数据清洗”、“数据选择”和“数据增强”四类。 “数据校验”表示对数据集进行校验,保证数据合法。
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本
--tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的指令数据集,用于微调。 GeneralPretrainHandler:默认。
开启图模式后,服务第一次响应请求时会有一个较长时间的图编译过程,并且会在当前目录下生成.torchair_cache文件夹来保存图编译的缓存文件。
创建导入任务 支持从OBS中导入新的数据,导入方式包括目录导入和Manifest文件导入。 dataset.import_data(path=None, anntation_config=None, **kwargs) 不同类型的数据集支持的导入方式如表1所示。
预测分析项目的工作流,将依次运行如下节点: 数据集版本发布:将已完成确认的数据进行版本发布。 数据校验:对您的数据集的数据进行校验,是否存在数据异常。 预测分析:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本
处理方法 请您在启动文件中减少无用日志输出。 父主题: 硬盘限制故障
--max-model-len:最大数据输入+输出长度,不能超过模型配置文件config.json里面定义的“max_position_embeddings”和“seq_length”;如果设置过大,会占用过多显存,影响kvcache的空间。
经常不能一次性获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如准确率、召回率、AUC等,能帮助您有效的评估,最终获得一个满意的模型。
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本