检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本
度(perplexity)。其中,perplexity最小的序列所对应的选项即为这道题的推理结果。运行时间比较长,例如llama3_8b 跑完mmlu要2~3小时。 在npu卡上,使用多卡进行推理时,需要预置变量 export PYTORCH_NPU_ALLOC_CONF=exp
度(perplexity)。其中,perplexity最小的序列所对应的选项即为这道题的推理结果。运行时间比较长,例如llama3_8b 跑完mmlu要2~3小时。 在npu卡上,使用多卡进行推理时,需要预置变量 export PYTORCH_NPU_ALLOC_CONF=exp
度(perplexity)。其中,perplexity最小的序列所对应的选项即为这道题的推理结果。运行时间比较长,例如llama3_8b 跑完mmlu要2~3小时。 在npu卡上,使用多卡进行推理时,需要预置变量 export PYTORCH_NPU_ALLOC_CONF=exp
度(perplexity)。其中,perplexity最小的序列所对应的选项即为这道题的推理结果。运行时间比较长,例如llama3_8b 跑完mmlu要2~3小时。 在npu卡上,使用多卡进行推理时,需要预置变量 export PYTORCH_NPU_ALLOC_CONF=exp
├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本
度(perplexity)。其中,perplexity最小的序列所对应的选项即为这道题的推理结果。运行时间比较长,例如llama3_8b 跑完mmlu要2~3小时。 在npu卡上,使用多卡进行推理时,需要预置变量 export PYTORCH_NPU_ALLOC_CONF=exp
度(perplexity)。其中,perplexity最小的序列所对应的选项即为这道题的推理结果。运行时间比较长,例如llama3_8b 跑完mmlu要2~3小时。 在npu卡上,使用多卡进行推理时,需要预置变量 export PYTORCH_NPU_ALLOC_CONF=exp
度(perplexity)。其中,perplexity最小的序列所对应的选项即为这道题的推理结果。运行时间比较长,例如llama3_8b 跑完mmlu要2~3小时。 在npu卡上,使用多卡进行推理时,需要预置变量 export PYTORCH_NPU_ALLOC_CONF=exp
对比。通常的做法是先用GPU单卡跑一遍训练,生成固定下来的随机数。然后NPU和GPU都用固定的随机数进行单机8卡训练,比较精度。 训练精度对齐。对齐前2000步的loss,观察loss在极小误差范围内。 GPU环境下,使用Github中的官方代码跑训练任务。Github中的官方代
├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本
├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本
├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本
├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本
--log-startup --disable-safe-unpickle 使用http://{宿主机ip}:8183 可以访问前端页面,如下跑文生图。 图6 访问前端页面 步骤四:Diffusers部署 安装依赖和模型包 安装pip依赖。 pip install accelerate
度(perplexity)。其中,perplexity最小的序列所对应的选项即为这道题的推理结果。运行时间比较长,例如llama3_8b 跑完mmlu要2~3小时。 在npu卡上,使用多卡进行推理时,需要预置变量 export PYTORCH_NPU_ALLOC_CONF=exp
├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本
度(perplexity)。其中,perplexity最小的序列所对应的选项即为这道题的推理结果。运行时间比较长,例如llama3_8b 跑完mmlu要2~3小时。 在npu卡上,使用多卡进行推理时,需要预置变量 export PYTORCH_NPU_ALLOC_CONF=exp
执行框架(如:MPI),而是适配加速芯片Ascend的一组AI框架+运行环境+启动方式的集合。 由于主流的Snt9系列Ascend加速卡都跑在ARM CPU规格的机器上,因此上层docker镜像也都是ARM镜像。相对于GPU场景的镜像中安装了与GPU驱动适配的CUDA(由英伟达推
set_context(device_target='Ascend');mindspore.run_check()" # 测试完需要恢复环境变量,实际跑训练业务的时候需要用到 export MS_GE_TRAIN=1 export MS_ENABLE_GE=1 图18 进入conda环境并进行测试