检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
title信息,主要用于前端的名称展示。 否 str description 数据集创建节点的描述信息。 否 str policy 节点执行的policy。 否 StepPolicy depend_steps 依赖的节点列表。 否 Step或者Step的列表 表2 CreateDatasetInput
发布完成后可前往gallery查看相应的资产信息,资产权限默认为private,可在资产的console页面自行修改。 进入AI Gallery。 单击“我的Gallery>我的资产>Workflow”,进入我的Workflow页面。 在“我的发布”页签中查看发布到AI Gallery的工作流。 图1 发布的Workflow
标注作业支持的数据类型 对于不同类型的数据集,用户可以选择不同的标注任务,当前ModelArts支持如下类型的标注任务。 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。 图像分割:根据图片中的物体划分出不同区域。 音频 声音分类:对声音进行分类。
gInput的列表 outputs 数据集标注节点的输出列表 是 LabelingOutput或者LabelingOutput的列表 properties 数据集标注相关的配置信息 是 LabelTaskProperties title title信息,主要用于前端的名称展示 否
nput的列表 outputs 服务部署节点的输出列表 是 ServiceOutput或者ServiceOutput的列表 title title信息,主要用于前端的名称展示 否 str description 服务部署节点的描述信息 否 str policy 节点执行的policy
当前支持两种方式实现多分支的能力,条件节点只支持双分支的选择执行,局限性较大,推荐使用配置节点参数控制分支执行的方式,可以在不添加新节点的情况下完全覆盖ConditionStep的能力,使用上更灵活。 构建条件节点控制分支执行主要用于执行流程的条件分支选择,可以简单的进行数值比较来
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型 自动学习生成的模型,支持哪些其他操作
用于数据批量处理、模型训练等场景。 应用场景 需要使用MRS Spark组件进行大量数据的计算时,可以根据已有数据使用该节点进行训练计算。 使用案例 在华为云MRS服务下查看自己账号下可用的MRS集群,如果没有,则需要创建,当前需要集群有Spark组件,安装时,注意勾选上。 您可
Standard使用run.sh脚本实现OBS和训练容器间的数据传输 自定义容器在ModelArts上训练和本地训练的区别如下图: 图1 本地与ModelArts上训练对比 ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下:
通过对ModelArts数据集能力进行封装,实现数据集的数据导入功能。数据集导入节点主要用于将指定路径下的数据导入到数据集或者标注任务中,主要应用场景如下: 适用于数据不断迭代的场景,可以将一些新增的原始数据或者已标注数据导入到标注任务中,并通过后续的数据集标注节点进行标注。 对于一些已标注好的原始数据,可以
ModelStep的输出 depend_steps=[job_step_1, job_step_2] # 依赖的作业类型节点对象 )# job_step是wf.steps.JobStep的 实例对象,train_url是wf.steps.JobOutput的name字段值
通过对ModelArts数据集能力进行封装,实现数据集的版本自动发布的功能。数据集版本发布节点主要用于将已存在的数据集或者标注任务进行版本发布,每个版本相当于数据的一个快照,可用于后续的数据溯源。主要应用场景如下: 对于数据标注这种操作,可以在标注完成后自动帮助用户发布新的数据集版本,结合as_input的能力提供给后续节点使用。
if_then_steps表示的是当Condition比较的结果为true时允许执行的节点列表,存储的是节点名称;此时else_then_steps中的step跳过不执行。 else_then_step表示的是当Condition比较的结果为false时允许执行的节点列表,存储的是节点名称;此时
支持单节点通过参数配置或者获取训练输出的metric指标信息来决定执行是否跳过,同时可以基于此能力完成对执行流程的控制。 应用场景 主要用于存在多分支选择执行的复杂场景,在每次启动执行后需要根据相关配置信息决定哪些分支需要执行,哪些分支需要跳过,达到分支部分执行的目的,与ConditionStep的使用场景类
在Workflow中指定仅运行部分节点 Workflow通过支持预置场景的方式来实现部分运行的能力,在开发工作流时按照场景的不同对DAG进行划分,之后在运行态可选择任意场景单独运行。具体代码示例如下所示: workflow =wf.Workflow( name="image_cls"
Calling可以调用外部工具或服务,例如实时数据检索、文件处理、数据库查询等,从而扩展其能力。 实时数据访问 由于大模型通常基于静态数据集训练,不具备实时信息。Function Calling允许模型访问最新的数据,提供更准确、更及时的回答。 提高准确性 在需要精确计算或特定领
@modelarts:color 否 String 内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape 否 String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。
智能标注:在标注一定量的数据情况下,用户可以通过启动智能标注任务对数据进行自动标注,提高标注的效率。 团队标注:对于大批量的数据,用户可以通过创建团队标注作业,进行多人协同标注。 人工标注 对于不同类型的数据,用户可以选择不同的标注类型。当前ModelArts支持如下类型的标注作业: 图片
DevServer管理 查询用户所有DevServer实例列表 创建DevServer 查询DevServer实例详情 删除DevServer实例 实时同步用户所有DevServer实例状态 启动DevServer实例 停止DevServer实例
使用ModelArts Standard部署模型并推理预测 推理部署使用场景 创建模型 创建模型规范参考 将模型部署为实时推理作业 将模型部署为批量推理服务 管理ModelArts模型 管理同步在线服务 管理批量推理作业