检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。DeepSpe
MaaS使用场景和使用流程 ModelArts Studio大模型即服务平台(后续简称为MaaS服务),提供了简单易用的模型开发工具链,支持大模型定制开发,让模型应用与业务系统无缝衔接,降低企业AI落地的成本与难度。 当您第一次使用MaaS服务时,可以参考快速入门使用ModelArts
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
Megatron-DeepSpeed Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。
安装相关依赖库。 ChatGLM-6B是完全基于Python开发的模型,训练之前需要事先安装与之依赖的Python库。其中部分依赖库可以使用pip工具安装,执行如下脚本: # shell pip install rouge_chinese nltk jieba sentencepiece
autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在
本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16 per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。
丰富的教程,帮助用户快速适配分布式训练,使用分布式训练极大减少训练时间。 分布式训练调测的能力,可在PyCharm/VSCode/JupyterLab等开发工具中调试分布式训练。 约束限制 总览页面打开的CodeLab不支持此项功能,但是如果用户在AI Hub中打开了可用的案例,会自动跳转到CodeLab中,此时是可以使用这项功能的。
异常信息。更多介绍请参考Msprobe工具溢出检测和精度比对介绍。 API精度预检是通过提取模型中所有的API前反向信息,通过工具构造相应的API单元测试,将NPU输出与标杆比对,从而检测出精度有差异的API。更多介绍请参考Msprobe工具离线预检和在线预检介绍。 父主题: PyTorch迁移精度调优
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、使用该量化工具,需要切换conda环境,运行以下命令。 conda activate
知识。ModelArts Studio大模型即服务平台(后续简称为MaaS服务)作为一个面向客户的大模型服务化平台,提供简单易用的模型开发工具链,支持大模型定制开发,让模型应用与业务系统无缝衔接,显著降低了企业AI落地的成本与难度。 业界主流开源大模型覆盖全 MaaS集成了业界主
自定义镜像规范 AI Gallery支持托管自定义镜像,但是托管的自定义镜像要满足规范才支持使用AI Gallery工具链服务(微调大师、在线推理服务)。 自定义镜像的使用流程 托管自定义镜像,操作步骤请参考托管模型到AI Gallery。 如果自定义镜像要支持训练,则需要满足自定义镜像规范(训练)。
及性能调优方法介绍。此外,ModelArts提供了即开即用的云上集成开发环境,包含迁移所需要的算力资源、AI框架、昇腾开发套件以及迁移调优工具链,最大程度减少客户自行配置环境的复杂度。 范围 本文涉及PyTorch训练的单卡和分布式业务迁移到昇腾的业务范围。当前针对常见的开源LL
接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表1。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库:
接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库:
有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库:
本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16 per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。
有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库:
Server上配置DCGM监控,用于监控Lite Server上的GPU资源。 DCGM是用于管理和监控基于Linux系统的NVIDIA GPU大规模集群的一体化工具,提供多种能力,包括主动健康监控、诊断、系统验证、策略、电源和时钟管理、配置管理和审计等。 约束限制 仅适用于GPU资源监控。 前提条件