检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
磁盘上。 使用ModelArts VSCode插件调试训练ResNet50图像分类模型 MindSpore VS Code Toolkit工具 目标检测 本案例以Ascend Model Zoo为例,介绍如何通过VS Code插件及ModelArts Notebook进行云端数据调试及模型开发。
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
模式,全量节点和增量节点分别占用2张卡,一共使用4张卡。 配置tools工具根目录环境变量 使用AscendCloud-LLM发布版本进行推理,基于AscendCloud-LLM包的解压路径配置tool工具根目录环境变量: export LLM_TOOLS_PATH=${root
候进行调用 模型基类NewBertForXXX:该类承自NewBertPreTrainedModel。 该类可用于执行AI Gallery工具链服务,此处以文本问答(Question Answering)的任务类型为例: class NewBertForQuestionAnswe
olicy 用于更新Notebook实例的自动停止时间。 OBS并行文件系统场景下使用MindInsight/TensorBoard可视化工具。 ModelArts modelarts:notebook:umountStorage modelarts:notebook:getMountedStorage
# 构建最终容器镜像 FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 # 安装 vim和curl 工具(依然使用华为开源镜像站) RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak
正常训练过程如下图所示。训练完成后,关注loss值,loss曲线收敛,记录总耗时和单步耗时。训练过程中,训练日志会在最后的Rank节点打印。可以使用可视化工具TrainingLogParser查看loss收敛情况。 图7 正常训练过程 训练完成后权重保存在自动生成的目录,例如:t2v-f17-2
# 构建最终容器镜像 FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 # 安装 vim和curl 工具(依然使用华为开源镜像站) RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak
emo/ -f -r OBS支持多种文件上传方式,当文件少于100个时,可以在OBS Console中上传,当文件大于100个时,推荐使用工具,推荐OBS Browser+(win)、obsutil(linux)。上述例子为obsutil使用方法。 准备算法 main.py文件内
对用户分享的新闻链接进行智能分类,帮助用户迅速定位到感兴趣的话题。 内容推荐系统: 根据用户的阅读偏好和历史行为,智能推荐相关新闻,增强用户粘性和满意度。 新闻分析工具: 为分析师提供自动分类的新闻数据,便于进行市场趋势和热点分析。 方案流程 图1 方案实现流程 准备数据集:获取新闻数据集,并上传到OBS。
模式,全量节点和增量节点分别占用2张卡,一共使用4张卡。 配置tools工具根目录环境变量 使用AscendCloud-LLM发布版本进行推理,基于AscendCloud-LLM包的解压路径配置tool工具根目录环境变量: export LLM_TOOLS_PATH=${root