检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
A:先生,您家的网络无法连接是吗 A:请问您尝试重新插拔网线吗? B:是的,我试了 B:还是不行 拼接后的微调数据格式示例: {"context": ["xxx号话务员为您服务! 先生您好,有什么可以帮助您的?", "你好,是这样的 我家里上不了网了 网连不上", "先生,您家的网络无法连接是吗 请问您尝试重新插拔网线吗?"]
训练智能客服系统大模型需考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案
知识库介绍 平台提供了知识库功能来管理和存储数据,支持为应用提供自定义数据,并与之进行互动。 知识库支持导入以下格式的本地文档: 文本文档数据。支持上传常见文本格式,包括:txt、doc、docx、pdf、ppt、pptx格式。 表格数据。支持上传常见的表格文件格式,便于管理和分
当前支持10M大小的返回,超过此大小会报错。 105014 插件request proxy error。 请检查插件服务是否有问题导致无法连接。 认证鉴权 110000 认证失败。 查看认证配置。 110001 用户信息获取失败。 查看用户信息是否正确配置。 工作流 112501
创建知识库 创建知识库的步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 单击左侧导航栏“工作台”,在“知识库”页签,单击右上角“创建知识库”。 在“创建知识库
常见问题 使用java sdk出现第三方库冲突 当出现第三方库冲突的时,如Jackson,okhttp3版本冲突等。可以引入如下bundle包(3.0.40-rc版本后),该包包含所有支持的服务和重定向了SDK依赖的第三方软件,避免和业务自身依赖的库产生冲突: <dependency>
t_knee、right_knee、left_ankle、right_ankle。 skeleton 是 定义骨架连接的列表,用于表示关键点之间的连接关系。每个连接用一对关键点索引表示,如 [1, 2],表示鼻子(nose)到左眼(left_eye)的连线。 实例分割数据集标注文件说明
例如,在构造泛化问题的任务中,需要基于原问题改写为相同含义的问题,而不是生成相似的问题。当提示词使用“请生成10个跟“手机银行怎么转账”相似的问题”时,模型会认为实体/关键词/场景一致则是相似(在这个例子里实体为手机银行),而不是任务需要的语义级别的相同含义,所以输出内容会发散。 父主题: 提示词写作进阶技巧
Agent开发平台介绍 Agent开发平台简介 Agent开发平台是基于NLP大模型,致力打造智能时代集开发、调测和运行为一体的AI应用平台。无论开发者是否拥有大模型应用的编程经验,都可以通过Agent平台快速创建各种类型的智能体。Agent开发平台旨在帮助开发者高效低成本的构建
05, 10)。 正则化参数 路径删除概率 用于定义路径删除机制中的删除概率。路径删除是一种正则化技术,它在训练过程中随机删除一部分的网络连接,以防止模型过拟合。这个值越大,删除的路径越多,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0,1)。 特征删除概率
好的翻译插件。 连接“提问器”节点与该节点,连接该节点与结束节点。 单击该节点,按照图12,进行参数配置,再单击“确定”。 图12 配置文本翻译插件参数 配置“大模型”节点。 鼠标拖动左侧“大模型”节点至编排页面,连接“意图识别”的“其他”意图节点和该节点,连接该节点和“结束”节点,单击该节点进行配置。
05, 10)。 正则化参数 路径删除概率 用于定义路径删除机制中的删除概率。路径删除是一种正则化技术,它在训练过程中随机删除一部分的网络连接,以防止模型过拟合。这个值越大,删除的路径越多,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。 取值范围:[0,1)。 特征删除概率
理解并执行用户的语音或文本指令。它们可以回答问题、提供信息、完成任务,甚至预测用户需求,为用户提供个性化的服务体验。常见的应用场景包括智能手机、智能家居设备、车载系统等。 二、人工智能助手的功能特点 智能对话:通过先进的自然语言处理技术,人工智能助手能够理解和回应用户的语音或文本输入,实现流畅的人机交互。
优化训练数据的质量 在数据科学和机器学习领域,数据的质量和多样性对模型的效果至关重要。通过有效的数据预处理和数据优化方法,通过提升训练数据的质量可以显著提升训练所得模型的效果。以下是一些关键的数据优化方法及其具体过程: 数据加工 错误数据过滤 :在大规模数据集中,噪声和错误数据是
取标签路径无关的内容删除。 数据通算单元 电子书内容提取 从电子书中提取出所有文本内容。 数据通算单元 数据转换 个人数据脱敏 对文本中的手机号码、身份证件、邮箱地址、url链接、国内车牌号、IP地址、MAC地址、IMEI、护照、车架号等个人敏感信息进行数据脱敏,或直接删除敏感信息。
打造政务智能问答助手 场景介绍 大模型(LLM)通过对海量公开数据(如互联网和书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SF
Request Entity Too Large 由于请求的实体过大,服务器无法处理,因此拒绝请求。为防止客户端的连续请求,服务器可能会关闭连接。如果只是服务器暂时无法处理,则会包含一个Retry-After的响应信息。 414 Request URI Too Long 请求的UR
提示词:大模型的系统提示词,用于指导模型更好的完成任务。 记忆:聊天记忆,打开后可记录多轮对话的内容。默认关闭。 图2 大模型节点配置示例 节点配置完成后,单击“确定”。 连接大模型节点和其他节点。 意图识别节点配置说明 意图识别节点通过大模型推理分析用户输入,匹配预定义的意图关键字类别,并根据识别结果引导至相应的处理流程,通常位于工作流的前置位置。
单击“立即创建”,可在资源池列表中查看节点的状态。如果状态为“运行中”,则创建成功。 在主控节点执行如下k8s命令,验证边缘池创建结果: 执行如下命令建立软连接。 ln -s /home/k3s/k3s /usr/bin/kubectl 执行如下命令查看节点状态。 kubectl get node
盘古专业大模型能力与规格 盘古专业大模型是盘古百亿级NL2SQL模型,适用于问数场景下的自然语言问题到SQL语句生成,支持常见的聚合函数(如去重、计数、平均、最大、最小、合计)、分组、排序、比较、条件(逻辑操作、离散条件、范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。