检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
还有一个是vggnet,他的问题是参数太大。深度学习的问题:1面向任务单一,依赖于大规模有标签数据,几乎是个黑箱模型。现在人工智能基本由深度学习代表了,但人工智能还有更多。。。然后就开始讲深度学习的开发框架。先整了了Theano,开始于2007年的加拿大的蒙特利尔大学。随着tens
有监督学习,无监督学习,半监督学习,强化学习。强化学习说的非常厉害,适用于下棋和游戏这一类领域,基本逻辑是正确就奖励,错误就惩罚来做一个学习。那么无监督学习的典型应用模式是什么呢?说出来之后你就会觉得无监督学习没有那么神秘了,那就是聚类。一个比较典型的例子就是超市里货架商品摆放,
降等。组合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数和一个模型。例如,通过指定如下损失函数可以得到PCA的第一个主向量模型定义为重建函数
点之间的最短路径。例如,在迷宫游戏中,我们可以使用广度优先搜索来找到从起点到终点的最短路径。网络分析:广度优先搜索可以用于分析社交网络或互联网中的关系。例如,寻找两个人之间的最短社交路径或确定网页之间的相关性。生成树和图的连通性:广度优先搜索可以用于生成树的构建和判断图的连通性。
降等。组合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数和一个模型。例如,通过指定如下损失函数可以得到PCA的第一个主向量:J(w) =
长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。
2.5,学习率是0.01,那下一个尝试的点是距离前一个点2.5*0.01=0.0025的位置。(梯度是固定的,还是每走一步都会变的呢?)个人认为好的学习率,不应该是一个固定值,而应该是先大后小。也就是先大步快速的到达底部附近,再小步寻找最底部。学习率是学习开始之前就设置的,叫超参
No dashboards are active for the current data set. 特地重新训练了,记下来日志目录,都是创建TensorBoard还是错误,不知道怎么回事,求解
y=wx+b里的w和b,也叫权重和偏差?在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试找出可最大限度的减少损失的模型。这一过程称为经验风险最小化损失函数有L1,L2。L1是绝对值,L2是均方误差MSE,那么2个场景做损失比较时会有L1一样,L2不一样的情况本来是
换成文本的技术。从早期的基于模板的方法到严格的统计模型,再到如今的深度模型,语音识别技术已经经历了几代的更迭。 图像识别图像识别是深度学习最成功的应用之一。深度学习在计算机视觉领域的突破发生在2012年,Hinton教授的研究小组利用卷积神经网络架构(AlexNet)大幅降低了ImageNet
深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播
1.2 深度学习框架目前大部分深度学习框架都已开源,不仅提供了多种多样的接口和不同语言的API,而且拥有详细的文档和活跃的社区,因此设计网络更加灵活和高效。另外,几乎所有的深度学习框架都支持利用GPU训练模型,甚至在单机多卡和分布式训练方面都有很好的支持,因此训练模型的时间也大大
什么有这样的效果,我们是不知道的。 在深度学习中就不一样了,我们必须掌握好数学这个画笔,用它规划出我们想要的神经网络。而对于颜料来说,各种深度学习框架已经提供了我们所需的各种颜料。我们要做的,就是利用不同的颜料,在空白的纸上,一笔一划画出我们所需的网络。 深度学习改变了传统互
深度学习是目前人工智能最受关注的领域,但黑盒学习法使得深度学习面临一个重要的问题:AI能给出正确的选择,但是人类却并不知道它根据什么给出这个答案。本期将分享深度学习的起源、应用和待解决的问题;可解释AI的研究方向和进展。
深度学习服务是基于华为云强大高性能计算提供的一站式深度学习平台服务、DLS视频教程,可帮助您快速了解DLS。
得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误差和作为成本函数时,随着数据量的增多,学
得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误差和作为成本函数时,随着数据量的增多,学
先探索一下tf2里读取出的数据。 每张图片的数据化表示是28*28=784个数值,每个数值的类型是numpy.uint8,uint8的取值范围是0-255, 这个可能就是所谓的256位图吧? 每张图片会有自己的标签,就是表示这张图片是数字0-9中的哪个。 另外用reshape重整了一下图像,比较有趣
缩小训练误差和测试误差的差距 这两个因素对应机器学习的两个主要挑战:欠拟合(underfitting) 和过拟合(overfitting)。欠拟合发生于模型不能在训练集上获得足够低的误差。过拟合发生于训练误差和和测试误差之间的差距太大。 通过调整模型的容量(
先定义训练数据的占位符,定义了2个,1个是特征值x,1个是标签值y然后定义模型函数,这个函数有3个参数,1个就是上面说的x,还有2个是参数,分别是w和b,就是2个参数斜率和位移而上面的2个参数,要用tf.Variable来声明来创建变量,它是会变的,在训练中学习到的,所以给它的初值是多