内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 分享深度学习笔记

    深度学习领域,特别是在NLP(最令人兴奋深度学习研究领域)中,该模型规模正在扩大。最新gpt-3模型有1750亿个参数。把它比作伯特就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习未来会更大吗?通常情况下,gpt-3是非常有说服力,但它在过去一再表明,“成功

    作者: 初学者7000
    636
    1
  • 深度学习之机器学习基础

    深度学习是机器学习一个特定分支。要想学好深度学习,必须对机器学习基本原理有深刻理解。本章将探讨贯穿本书其余部分一些机器学习重要原理。我们建议新手读者或是希望更全面了解读者参考一些更全面覆盖基础知识机器学习参考书,例如Murphy (2012) 或者Bishop (20

    作者: 小强鼓掌
    842
    2
  • 深度学习学习路线

    实战项目 深度学习是一门实践性很强学科,需要通过实战项目来加深对理论知识理解应用。可以选择一些开源深度学习项目进行学习实践,如ImageNet、CIFAR-10等。 2.比赛竞赛 参加深度学习相关比赛竞赛,可以锻炼自己深度学习能力实战经验,也可以与其他深度学习爱好者交

    作者: 赵KK日常技术记录
    发表时间: 2023-06-24 17:11:50
    5
    0
  • 什么是深度学习深度学习与Mindspore实践》今天你读书了吗?

    (AutoEncoder)、生成对抗网络 (GAN)等。深度学习方法处理计算机视觉问题过程类似于人类学习过程:我们搭建深度学习模型通过对现有图片不断学**结出各类图片特征,最后输出一个理想模型,该模型能够准确预测新图片所属类别。深度学习深度”体现在将数据转换为所需要数据层数之深。给定模型进行

    作者: QGS
    946
    0
  • 深度学习模型结构

    对信息处理是分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks

    作者: QGS
    646
    2
  • 深度学习笔记之理解

    我们今天知道一些最早学习算法,是旨在模拟生物学习计算模型,即大脑怎样学习或为什么能学习模型。其结果是深度学习以人工神经网络 (artificial neural network, ANN) 之名而淡去。彼时,深度学习模型被认为是受生物大脑(无论人类大脑或其他动物大脑)所启发

    作者: 小强鼓掌
    826
    2
  • 深度学习之经验E

      无监督学习算法(unsupervised learning algorithm) 训练含有很多特征数据集,然后学习出这个数据集上有用结构性质。在深度学习中,我们通常要学习生成数据集整个概率分布,显式地,比如密度估计,或是隐式地,比如合成或去噪。还有一些其他类型无监督学习

    作者: 小强鼓掌
    1060
    4
  • 深度学习之正则化

    机器学习一个核心问题是设计不仅在训练数据上表现好,并且能在新输入上泛化好算法。在机器学习中,许多策略显式地被设计为减少测试误差(可能会以增大训练误差为代价)。这些策略被统称为正则化。我们将在后文看到,深度学习工作者可以使用许多不同形式正则化策略。事实上,开发更有效正则化

    作者: 小强鼓掌
    527
    0
  • 部署深度学习模型

    虽然modelarts能够帮助我们在线上完成深度学习模型,但是训练好深度学习模型是怎么部署

    作者: 初学者7000
    879
    3
  • 深度学习介绍

    学习目标 目标 知道深度学习与机器学习区别了解神经网络结构组成知道深度学习效果特点 应用 无 1.1.1 区别   1.1.1.1 特征提取方面 机器学习特征工程步骤是要靠手动完成,而且需要大量领域专业知识深度学习通常由多个层

    作者: Lansonli
    发表时间: 2021-09-28 15:18:45
    1023
    0
  • 深度学习之过拟合

    然而,经验风险最小化很容易导致过拟合。高容量模型会简单地记住训练集。在很多情况下,经验风险最小化并非真的可行。最有效现代优化算法是基于梯度下降,但是很多有用损失函数,如 0 − 1 损失,没有有效导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小化

    作者: 小强鼓掌
    335
    1
  • 深度学习是机器学习一种

    深度学习是机器学习一种,而机器学习是实现人工智能必经路径。深度学习概念源于人工神经网络研究,含多个隐藏层多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象高层表示属性类别或特征,以发现数据分布式特征表示。研究深度学习动机在于建立模拟人脑进行分析学

    作者: QGS
    531
    1
  • 深度学习现实应用

    种语言即时翻译,速度之快宛如魔法。谷歌翻译背后,就是机器学习。此时,你可能会想,谷歌翻译已经经历了很长时间,那么现在有些什么新意呢?实际上,在过去两年时间里,谷歌已经完全将深度学习嵌入进了谷歌翻译中。事实上,这些对语言翻译知之甚少深度学习研究人员正提出相对简单机器学习

    作者: 运气男孩
    832
    4
  • 分享深度学习未来发展学习范式-——简化学习

    限速。负责任简化学习不仅使模型足够轻量级以供使用,而且确保它能够适应数据集中没有出现过角落情况。在深度学习研究中,简化学习可能是最不受关注,因为“我们通过一个可行架构尺寸实现了良好性能” 并不像 “我们通过由数千千万万个参数组成体系结构实现了最先进性能”一样吸引

    作者: 初学者7000
    1133
    1
  • 深度学习已经取得进展

    是机器学习历史上非常困难领域:接近人类水平图像分类接近人类水平语音识别接近人类水平手写文字转录更好机器翻译更好文本到语音转换数字助理接近人类水平自动驾驶更好广告定向投放更好网络搜索结果能够回答用自然语言提出问题在围棋上战胜人类我们仍然在探索深度学习能力边界。

    作者: ypr189
    827
    1
  • 深度学习模型介绍

    深度神经网络:深度学习模型有很多,目前开发者最常用深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络 (RNTN)、自动编码器 (AutoEncoder)、生成对抗网络

    作者: 极客潇
    1762
    2
  • 深度学习模型结构

    对信息处理是分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks

    作者: 运气男孩
    1146
    2
  • 深度强化学习

    深度强化学习是人工智能最有趣分支之一。它是人工智能社区许多显着成就基石,它在棋盘、视频游戏、自动驾驶、机器人硬件设计等领域击败了人类冠军。深度强化学习利用深度神经网络学习能力,可以解决对于经典强化学习(RL)技术来说过于复杂问题。深度强化学习比机器学习其他分支要复杂得多

    作者: QGS
    466
    1
  • 深度学习之噪声

    Dropout另一个重要方面是噪声是乘性。如果是固定规模加性噪声,那么加了噪声 ϵ 整流线性隐藏单元可以简单地学会使 hi 变得很大(使增加噪声 ϵ 变得不显著)。乘性噪声不允许这样病态地解决噪声鲁棒性问题。另一种深度学习算法——批标准化,在训练时向隐藏单元引入加性乘性噪声

    作者: 小强鼓掌
    1045
    3
  • 机器学习深度学习比较

    数据依赖性性能是两种算法之间主要关键区别。虽然,当数据很小时,深度学习算法表现不佳。这就是是深度学习算法需要大量数据才能完美理解原因。但是,在这种情况下,我们可以看到算法使用以及他们手工制作规则。上图总结了这一事实。硬件依赖通常,深度学习依赖于高端机器,而传统学习依赖于低端机器。因

    作者: @Wu
    541
    1