检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用更多的显存资源,这可能导致显存不足,并且会延长每次训练的时长。 学习率 学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。 如果学习率过小,模型的收敛速度将变得非常慢。 热身比例 热身比例是指在模型训练初期逐渐增加学习率的过程。
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
质量或者减小学习率的方式来解决。 图3 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss保持平缓且保持高位不下降的原因可能是由于目标任务的难度较大,或者模型的学习率设置得过小,导致模型的收敛速度太慢,无法达到最优解。您可以尝试增大训练轮数或者增大学习率的方式来解决。
况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。
训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个参数的值,可以提升模型回答的确定性,避免生成异常内容。
为什么微调后的盘古大模型总是重复相同的回答 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或
训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据质量:请检查训练数据的质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。
李晓在宋朝的生活充满了挑战。他必须学习如何使用新的语言,适应新的生活方式。他开始学习宋朝的礼仪,尝试理解这个时代的文化。在宋朝,李晓遇到了许多有趣的人。他遇到了一位名叫赵敏拿来的小女孩,她聪明伶俐,让李晓对她产生了深深的喜爱。他还遇到了一位名叫王安石的大儒,他的智慧和博学让李晓深
意图识别调用大模型的prompt不符合模型输入的规范。 检查输入的prompt格式,消息的角色和内容。 101096 意图识别调用大模型失败。 检查消息的格式,内容以及大模型服务是否正常。 101095 意图识别用户query输入/引用解析失败。 检查用户query格式和内容。 101094
何进行模型学习 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码 为什么微调后的盘古大模型的回答会异常中断
),由于这些领域的相关数据广泛存在,模型通常能够较好地理解并生成准确回答。在这种情况下,通过调整提示词来引导模型的生成风格和细节,通常可以达到较好的效果。 业务逻辑的复杂性 判断任务场景的业务逻辑是否符合通用逻辑。如果场景中的业务逻辑较为简单、通用且易于理解,那么调整提示词是一个可行的方案。
盘古预测大模型是面向结构化数据,通过任务理解、模型推荐、模型融合技术,构建通用的预测能力。 ModelArts Studio大模型开发平台为用户提供了多种规格的预测大模型,以满足不同场景和需求。以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 模型支持区域 模型名称 说明 西南-贵阳一
等,提高油气资源的开发利用效率。进行产能分级预测,例如预测油井的产能等级,优化油气生产计划。 电力行业:进行电力负荷预测,例如根据历史负荷数据,预测未来的电力负荷,优化电力生产和调度。 钢铁行业:进行钢水温度预测,例如预测钢水温度,提高浇注和连铸的准确性和效率。 2024年12月
确保数据质量和适配性 数据发布功能通过数据评估和配比,确保发布的数据集满足大模型训练的高标准。这不仅包括数据规模的要求,还涵盖了数据质量、平衡性和代表性的保证,避免数据不均衡或不具备足够多样性的情况,进而提高模型的准确性和鲁棒性。 提高数据的多样性和代表性 通过合理的数据配比,帮
通过智能客服处理大部分的常规问题,将人工客服释放出来处理更复杂、更个性化的客户需求;个性化服务:基于大模型的智能客服能够学习和适应用户的行为模式和偏好,提供更加个性化的服务。 农业 科学计算大模型包括全球中期天气要素模型和降水模型,可以对未来一段时间的天气和降水进行预测,全球中期
科技行业公司的最大利润和市值是多少? 科技行业公司的最小利润和市值是多少? 科技行业公司的中位利润和市值是多少? 科技行业公司的总利润和市值是多少? … 来源四:基于大模型的数据泛化。基于目标场任务的分析,通过人工标注部分数据样例,再基于大模型(比如盘古提供的任意一个规格的基础功能模
并根据设定的轮数生成新数据。通过数据合成技术,可以生成大量高质量的训练数据,这些数据可以用于大模型的预训练,增强模型的泛化能力和性能。 数据标注:平台支持对无标签的数据添加标签或对现有的标签进行重新标注,以提升数据集的标注质量。用户可以针对不同的数据集灵活地选择对应的标注项,还可
用户Token。 用于获取操作API的权限。获取Token接口响应消息头中X-Subject-Token的值即为Token。 Content-Type 是 String 发送的实体的MIME类型,参数值为“application/json”。 使用AppCode认证方式的请求Header参数见表2。
随着互联网的发展,短视频已成为了日常生活中不可或缺的一部分,凭借其独特的形式和丰富的内容吸引了大量流量,并为企业和个人提供了一个全新的营销平台。短视频用户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供一些基本信息,大模型就能生成需求的文案,从而大大提高文案的质量和效率。
让模拟出的天气接近真实世界中的变化。 CNOP噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。