检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts平台从对象存储服务(OBS)中导入模型包适用于单模型场景。 如果有多模型复合场景,推荐使用自定义镜像方式,通过从容器镜像(SWR)中选择元模型的方式创建模型部署服务。 制作自定义镜像请参考从0-1制作自定义镜像并创建AI应用。 父主题: Standard推理部署
在安装ma-cli时会默认同时安装所需的依赖包。当显示“Successfully installed”时,表示ma-cli安装完成。 如果在安装过程中报错提示缺少相应的依赖包,请根据报错提示执行如下命令进行依赖包安装。 pip install xxxx 其中,xxxx为依赖包的名称。 父主题: ModelArts
deactivate命令退出当前虚拟环境,默认进入base环境。执行pip list命令查询已安装的包,然后安装需要的依赖进行保存,最后切换至指定的虚拟环境后再运行脚本。 父主题: 环境配置故障
数据集版本名称。 with_column_header Boolean 发布的CSV文件的第一行是否为列名,对于表格数据集有效。可选值如下: true:发布的CSV文件的第一行是列名 false:发布的CSV文件的第一行不是列名 表12 LabelStats 参数 参数类型 描述 attributes
grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。
JupyterLab中保存文件时报错如下: 原因分析 浏览器安装了第三方插件proxy进行了拦截,导致无法进行保存。 在Notebook中的运行文件超过指定大小就会提示此报错。 jupyter页面打开时间太长。 网络环境原因,是否有连接网络代理。 解决方法 关掉插件然后重新保存。
GPU A系列裸金属服务器无法获取显卡如何解决 问题现象 在A系列裸金属服务器上使用PyTorch一段时间后,出现获取显卡失败的现象,报错如下: > torch.cuda.is_available() /usr/local/lib/python3.8/dist-packages/torch/cuda/__init__
908-xxx.zip文件,获取路径参见表1。本案例使用的是解压到子目录aigc_train->torch_npu->diffusers的所有文件,将diffusers整个目录上传到宿主机上。 依赖的插件代码包、模型包和数据集存放在宿主机上的本地目录结构如下,供参考。 [root@devserver
_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 worker_id 是 String 标注团队成员ID。 workforce_id 是 String 标注团队ID。 请求参数 无 响应参数
同时该网络的解除关联SFS Turbo按钮置灰不可操作。 图3 关联SFS Turbo状态 原因分析 ModelArts缺少SFS Turbo委托权限导致关联或解除关联失败。 处理方法 需要您给ModelArts配置SFS Turbo委托权限,配置步骤请参考最佳实践的“委托授权ModelArts云服务使用SFS
String 分页展示时,从第几页开始。默认为0。 order 否 String 返回的APP列表排序方式,可选值包括asc、desc。默认为asc。 sort_by 否 String 返回的APP列表按何属性排序,可选值包括app_name、created_at、updated_at。默认为name。
print('start') kv_store = mxnet.kv.create('dist_async') print('end') 原因分析 worker阻塞的原因可能是连不上server。 处理方法 将如下代码放在“启动文件”里“import mxnet”之前可以看到节点间相互通信状态,同时ps能够重新发送。
方法1:如果您希望使用公共资源池下的Ascend Snt3,可以等待其他用户释放,即其他使用Ascend Snt3芯片的服务停止,您即可选择此资源进行部署上线。 方法2:如果专属资源池还有Ascend Snt3资源,您可以创建一个Ascend Snt3专属资源池使用。 方法3:如果专属资源池的Ascend
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
found。 原因分析 该报错信息表示验证集中有label在训练集中不存在,可能由于在发布数据集版本进行数据切分时,训练集比例填写为0导致发布的数据全部为验证集,所以出现上述报错。 处理方法 重新发布数据,切分比例为0.8 或者0.9重新创建训练作业进行训练。 父主题: 训练作业运行失败
授权”。 在弹出的“添加授权”窗口中,选择: 授权对象类型:所有用户 委托选择:新增委托 权限配置:普通用户 选择完成后勾选“我已经详细阅读并同意《ModelArts服务声明》”,然后单击“创建”。 图1 配置委托访问授权 完成配置后,在ModelArts控制台的权限管理列表,可查看到此账号的委托配置信息。
用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 export_type 否 Integer 导出类型,不传则默认查询所有类型的导出任务。可选值如下: 0:已标注 1:未标注 2:全部 3:条件筛选 limit 否 Integer 指定每一页返回的最大条目数,取值范围[1
登录“应用运维管理”控制台,在“配置管理 > Agent管理”中,选择未安装ICAgent的集群,并单击“安装ICAgent”。 图1 安装ICAgent 建议不要随意卸载ICAgent,否则会影响特权池详情页的参数显示。 父主题: Lite Cluster
如何查看ModelArts训练作业资源占用情况? 在ModelArts管理控制台,选择“模型训练>训练作业”,进入训练作业列表页面。在训练作业列表中,单击目标作业名称,查看该作业的详情。您可以在“资源占用情况”页签查看到如下指标信息。 CPU:CPU使用率(cpuUsage)百分比(Percent)。 MEM:物理内存
int机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint接续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置接续训练,加载中断生成的checkpoint,中