已找到以下 10000 条记录
  • 深度学习简介

    与传统学习方法相比,深度学习方法预设了更多模型参数,因此模型训练难度更大,根据统计学习一般规律知道,模型参数越多,需要参与训练数据量也越大。 20世纪八九十年代由于计算机计算能力有限相关技术限制,可用于分析数据量太小,深度学习在模式分析中并没有表现出优异识别性能。自从2006年,

    作者: 某地瓜
    1681
    1
  • 认识深度学习

    什么是深度学习 要理解什么是深度学习,人们首先需要理解它是更广泛的人工智能领域一部分。简而言之,人工智能涉及教计算机思考人类思维方式,其中包括各种不同应用,例如计算机视觉、自然语言处理机器学习。 机器学习是人工智能一个子集,它使计算机在没有明确编程情况下能够更好地完成

    作者: 建赟
    1845
    2
  • 深度学习学习

    个相当高代价值。通常,就总训练时间最终代价值而言,最优初始学习效果会好于大约迭代 100 次左右后最佳效果。因此,通常最好是检测最早几轮迭代,选择一个比在效果上表现最佳学习率更大学习率,但又不能太大导致严重震荡。

    作者: 小强鼓掌
    454
    2
  • 什么是深度学习

    深度学习是支撑人工智能发展核心技术,云服务则是深度学习主要业务模式之一。OMAI深度学习平台(以下简称OMAI平台)即是在上述前提下诞生平台软件。OMAI深度学习平台是具备深度学习算法开发、模型训练、推理服务等能力一站式平台软件。OMAI平台以支持高性能计算技术大规模分

    作者: OMAI
    6642
    0
  • 深度学习学习算法

            机器学习算法是一种可以从数据中学习算法。然而,我们所谓学习”是什么意思呢?Mitchell (1997) 提供了一个简洁定义:“对于某类任务 T 性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量

    作者: 小强鼓掌
    944
    0
  • 深度学习学习算法

    衡量性能有所提升。” 经验 E,任务 T 性能度量 P 定义范围非常宽广,在本书中我们并不会去试图解释这些定义具体意义。相反,我们会在接下来章节中提供直观解释示例来介绍不同任务、性能度量经验,这些将被用来构建机器学习算法。

    作者: 小强鼓掌
    737
    1
  • 深度学习释义

    深度学习是机器学习一种,而机器学习是实现人工智能必经路径。深度学习概念源于人工神经网络研究,含多个隐藏层多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象高层表示属性类别或特征,以发现数据分布式特征表示。研究深度学习动机在于建立模拟人脑进行分析学

    作者: 某地瓜
    1961
    1
  • 深度学习导论

    Network)的扩展和应用为基础,这次浪潮出现标志着深度学习时代来临。这一阶段研究主要集中在如何提高深度神经网络性能泛化能力上。SVM作为一种经典机器学习算法,在分类问题上表现出了良好性能。随着深度学习不断发展,其应用领域也在不断扩大。深度学习已经成为了许多领域重要工具,例如自然语言处理、计算机视

    作者: 林欣
    42
    1
  • 深度学习挑战

    其擅长深度学习所需计算类型。在过去,这种水平硬件对于大多数组织来说成本费用太高。然而,基于云计算机器学习服务增长意味着组织可以在没有高昂前期基础设施成本情况下访问具有深度学习功能系统。 •数据挑战:深度学习也会受到妨碍其他大数据项目的数据质量和数据治理挑战阻碍。用

    作者: 建赟
    1653
    2
  • 深度学习发展学习范式——成分学习

    成分学习    成分学习不仅使用一个模型知识,而且使用多个模型知识。人们相信,通过独特信息组合或投入(包括静态动态),深度学习可以比单一模型在理解性能上不断深入。    迁移学习是一个非常明显成分学习例子, 基于这样一个想法, 在相似问题上预训练模型权重可以

    作者: 初学者7000
    716
    5
  • 深度学习之Bagging学习

    回想一下Bagging学习,我们定义 k 个不同模型,从训练集有替换采样构造k 个不同数据集,然后在训练集 i 上训练模型 i。Dropout目标是在指数级数量神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量学习算法较小步长,如梯度下降

    作者: 小强鼓掌
    1254
    2
  • 深度学习层级结构

    语言有着层级结构,大结构部件是由小部件递归构成。但是,当前大多数基于深度学习语言模型都将句子视为词序列。在遇到陌生句子结构时,循环神经网络(RNN)无法系统地展示、扩展句子递归结构,深度学习学到各组特征之间关联是平面的,没有层级关系,那么请问层级关系是重要吗,在哪些方面能够体现

    作者: 初学者7000
    634
    1
  • 深度学习学习 XOR

    W , c) 计算得到隐藏单元向量 h。这些隐藏单元值随后被用作第二层输入。第二层就是这个网络输出层。输出层仍然只是一个线性回归模型,只不过现在它作用于 h 而不是 x。网络现在包含链接在一起两个函数:h = f(1)(x; W , c) y = f(2)(h; w

    作者: 小强鼓掌
    949
    3
  • 深度学习概览

    HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关基本知识,其中包括深度学习发展历程、深度学习神经 网络部件、深度学习神经网络不同类型以及深度学习工程中常见问题。

  • 深度学习概念

    这些学习过程中获得信息对诸如文字,图像和声音等数据解释有很大帮助。它最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂机器学习算法,在语音图像识别方面取得效果,远远超过先前相关技术。 深度学习在搜索技术,数据挖掘,机器

    作者: 某地瓜
    1859
    1
  • 深度学习识别滑动验证码

    像上一节介绍一样,要训练深度学习模型也需要准备训练数据,数据也是分为两部分,一部分是验证码图像,另一部分是数据标注,即缺口位置。但上一节不一样是,这次标注不再是单纯验证码文本了,因为这次我们需要表示是缺口位置,缺口对应是一个矩形框,要表示一个矩形框

    作者: 崔庆才丨静觅
    发表时间: 2021-12-31 16:52:28
    945
    0
  • 深度学习应用

    计算机视觉香港中文大学多媒体实验室是最早应用深度学习进行计算机视觉研究华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBMDBN引入到

    作者: QGS
    657
    1
  • 深度学习应用

    计算机视觉香港中文大学多媒体实验室是最早应用深度学习进行计算机视觉研究华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBMDBN引入到

    作者: QGS
    1525
    2
  • 深度学习之机器学习基础

    深度学习是机器学习一个特定分支。要想学好深度学习,必须对机器学习基本原理有深刻理解。本章将探讨贯穿本书其余部分一些机器学习重要原理。我们建议新手读者或是希望更全面了解读者参考一些更全面覆盖基础知识机器学习参考书,例如Murphy (2012) 或者Bishop (20

    作者: 小强鼓掌
    840
    2
  • 深度学习简介

    本课程由台湾大学李宏毅教授2022年开发课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。