已找到以下 10000 条记录
  • 深度学习

    全面地讲述深度学习历史超出了本书范围。然而,一些基本背景对理解深度学习是有用深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习雏形出现在控制论(cybernetics)中,20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到

    作者: QGS
    965
    4
  • 什么是深度学习

    深度学习是使用多层结构从原始数据中自动学习并提取高层次特征一类机器学习算法。通常,从原始数据中提取高层次、抽象特征是非常困难深度学习将原始数据表示成一个嵌套特征层级,这样一来,每层特征均可以由更简单特征来定义计算。尤为重要是,深度学习可以自动地学习如何最优地将不

    作者: 角动量
    1546
    5
  • 深度学习计算服务平台

    深度学习计算服务平台是中科弘云面向有定制化AI需求行业用户,推出AI开发平台,提供从样本标注、模型训练、模型部署一站式AI开发能力,帮助用户快速训练部署模型,管理全周期AI工作流。平台为开发者设计了众多可帮助降低开发成本开发工具与框架,例如AI数据集、AI模型与算力等。

  • 深度学习

    能。借助深度学习,我们可以制造出具有自动驾驶能力汽车能够理解人类语音电话。由于深度学习出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后数学概念几十年前便提出,但致力于创建和训练这些深度模型编程库是近

    作者: G-washington
    2443
    1
  • 机器学习深度学习区别是什么?

    深度学习是机器学习算法子类,其特殊性是有更高复杂度。因此,深度学习属于机器学习,但它们绝对不是相反概念。我们将浅层学习称为不是深层那些机器学习技术。让我们开始将它们放到我们世界中:这种高度复杂性基于什么?在实践中,深度学习由神经网络中多个隐藏层组成。我们在《从神经元到

    作者: @Wu
    1169
    3
  • 深度学习

    使用深度学习方法处理计算机视觉问题过程类似于人类学习过程:我们搭建深度学习模型通过对现有图片不断学**结出各类图片特征,最后输出一个理想模型,该模型能够准确预测新图片所属类别。图1-2展示了两个不同学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分

    作者: 生命无价
    1555
    1
  • 深度学习学习算法

            机器学习算法是一种可以从数据中学习算法。然而,我们所谓学习”是什么意思呢?Mitchell (1997) 提供了一个简洁定义:“对于某类任务 T 性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量

    作者: 小强鼓掌
    944
    0
  • 深度学习是什么?

    学习过程中获得信息对诸如文字,图像和声音等数据解释有很大帮助。它最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂机器学习算法,在语音图像识别方面取得效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习

    作者: QGS
    820
    2
  • 深度学习发展学习范式——成分学习

    成分学习    成分学习不仅使用一个模型知识,而且使用多个模型知识。人们相信,通过独特信息组合或投入(包括静态动态),深度学习可以比单一模型在理解性能上不断深入。    迁移学习是一个非常明显成分学习例子, 基于这样一个想法, 在相似问题上预训练模型权重可以

    作者: 初学者7000
    716
    5
  • 深度学习层级结构

    语言有着层级结构,大结构部件是由小部件递归构成。但是,当前大多数基于深度学习语言模型都将句子视为词序列。在遇到陌生句子结构时,循环神经网络(RNN)无法系统地展示、扩展句子递归结构,深度学习学到各组特征之间关联是平面的,没有层级关系,那么请问层级关系是重要吗,在哪些方面能够体现

    作者: 初学者7000
    634
    1
  • 各个模型深度学习训练加速框架选择 - AI开发平台ModelArts

    各个模型深度学习训练加速框架选择 LlamaFactory框架使用两种训练框架: DeepSpeedAccelerate都是针对深度学习训练加速工具,但是它们实现方式应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型大规模数据集训练。D

  • 【mindSpore】【深度学习】求指路站内深度学习教程

    老师给了我们个任务,用mindSpore完成一个深度学习,求大佬指路,站内有什么方便教程。要求不能是花卉识别、手写体数字识别、猫狗识别,因为这些按教程已经做过了(然而我还是不会mindSpore)。尽量简单,我们只要是个深度学习就能完成任务。

    作者: abcd咸鱼
    1443
    1
  • 深度学习识别滑动验证码

    像上一节介绍一样,要训练深度学习模型也需要准备训练数据,数据也是分为两部分,一部分是验证码图像,另一部分是数据标注,即缺口位置。但上一节不一样是,这次标注不再是单纯验证码文本了,因为这次我们需要表示是缺口位置,缺口对应是一个矩形框,要表示一个矩形框

    作者: 崔庆才丨静觅
    发表时间: 2021-12-31 16:52:28
    945
    0
  • 深度学习机器学习区别

    数据一种机器学习技术。它基本特点,是试图模仿大脑神经元之间传递,处理信息模式。最显著应用是计算机视觉自然语言处理(NLP)领域。显然,“深度学习”是与机器学习“神经网络”是强相关,“神经网络”也是其主要算法手段;或者我们可以将“深度学习”称之为“改良版神经网

    作者: 运气男孩
    685
    2
  • 机器学习深度学习区别

    深度学习由经典机器学习发展而来,两者有着相同与不同特点1.完全不同模式机器学习:使计算机能从数据中学习,并利用其学到知识来提供答案(通常为预测)。依赖于不同范式(paradigms),例如统计分析、寻找数据相似性、使用逻辑等深度学习:使用单一技术,最小化人脑劳动。使用被称为

    作者: 极客潇
    1358
    4
  • 深度学习学习

    个相当高代价值。通常,就总训练时间最终代价值而言,最优初始学习效果会好于大约迭代 100 次左右后最佳效果。因此,通常最好是检测最早几轮迭代,选择一个比在效果上表现最佳学习率更大学习率,但又不能太大导致严重震荡。

    作者: 小强鼓掌
    454
    2
  • 适合新手深度学习综述(4)--深度学习方法

    简要介绍了无监督学习深度架构,并详细解释了深度自编码器。4.3 深度强化学习强化学习使用奖惩系统预测学习模型下一步。这主要用于游戏机器人,解决平常决策问题。Schmidthuber(2014) 描述了强化学习 (RL) 中深度学习进展,以及深度前馈神经网络 (FNN) 循环神经网络

    作者: @Wu
    177
    1
  • 浅谈深度学习

    动从数据中学习模式,并根据这些模式进行预测分类。由于其高效性准确性,深度学习技术正在成为越来越多领域主流技术。然而,深度学习技术也存在一些挑战和问题。例如,深度学习模型训练需要大量数据计算资源,而且通常需要大量时间人力来完成。此外,深度学习模型精度稳定性也需要

    作者: 运气男孩
    24
    3
  • 深度学习学习算法

    衡量性能有所提升。” 经验 E,任务 T 性能度量 P 定义范围非常宽广,在本书中我们并不会去试图解释这些定义具体意义。相反,我们会在接下来章节中提供直观解释示例来介绍不同任务、性能度量经验,这些将被用来构建机器学习算法。

    作者: 小强鼓掌
    737
    1
  • 深度学习之流形学习

    中大部分区域都是无效输入,感兴趣输入只分布在包含少量点子集构成一组流形中,而学习函数中感兴趣输出变动只位于流形中方向,或者感兴趣变动只发生在我们从一个流形移动到另一个流形时候。流形学习是在连续数值数据无监督学习设定下被引入,尽管这个概率集中想法也能够泛化到离散

    作者: 小强鼓掌
    811
    1