检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
source_job_version String 来源训练作业的版本。 source_type String 模型来源的类型。 当模型为自动学习部署过来时,取值为“auto”。 当模型是用户通过训练作业或OBS模型文件部署时,此值为空。 model_type String 模型类型
表示张量并行。 PP 8 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
float,一般不建议用户修改 TPE算法 TPE算法全称Tree-structured Parzen Estimator,是一种利用高斯混合模型来学习超参模型的算法。在每次试验中,对于每个超参,TPE为与最佳目标值相关的超参维护一个高斯混合模型l(x),为剩余的超参维护另一个高斯混合模型
属资源池容器引擎空间不会造成额外费用增加。 更多信息,请参见导入AI应用对镜像大小的约束限制。 自动学习项目中,在完成模型部署后,其生成的模型也将自动上传至模型列表中。但是自动学习生成的模型无法下载,只能用于部署上线。 Standard推理服务部署 只支持使用专属资源池部署的在线
768长度,则推荐增加此值(≥ 2)。 (此参数目前仅适用于Llama3系列模型长序列训练) lr 2.5e-5 学习率设置。 min-lr 2.5e-6 最小学习率设置。 seq-length 4096 要处理的最大序列长度。 convert_mg2hf_at_last true
表示张量并行。 PP 8 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
@modelarts:size Array of objects 内置属性:图像尺寸(图像的宽度、高度、深度),类型为List<Integer>。列表中的第一个数字为宽度(像素),第二个数字为高度(像素),第三个数字为深度(深度可以没有,默认为3),如[100,200,3]和[100,200]均合法。 说
内置属性:图像尺寸(图像的宽度、高度、深度),类型为List[/topic/body/section/table/tgroup/tbody/row/entry/p/br {""}) (br]。列表中的第一个数字为宽度(像素),第二个数字为高度(像素),第三个数字为深度(深度可以没有,默认为3),如[100
日志提示“No space left on device” 问题现象 训练过程中复制数据/代码/模型时出现如下报错: 图1 错误日志 原因分析 出现该问题的可能原因如下。 磁盘空间不足。 分布式作业时,有些节点的docker base size配置未生效,容器内“/”根目录空间未
模型运行时环境。 model_metrics String 模型精度信息。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为auto。 model_type String 模型类型,取值为TensorFlow/Image/PyTorch/Template/MindSpore。
String 模型名称。 model_version String 模型版本。 source_type String 模型来源,当模型是由自动学习产生时,返回此字段,取值为:auto。 status String 模型实例运行状态,取值为: ready:已就绪(所有实例已启动) co
768长度,则推荐增加此值(≥ 2)。 (此参数目前仅适用于Llama3系列模型长序列训练) lr 2.5e-5 学习率设置。 min-lr 2.5e-6 最小学习率设置。 seq-length 4096 要处理的最大序列长度。 convert_mg2hf_at_last 1 M
取值范围:1~100000 学习率/learning_rate 设置每个迭代步数(iteration)模型参数/权重更新的速率。学习率设置得过高会导致模型难以收敛,过低则会导致模型收敛速度过慢。 取值范围:0~0.1 默认值:0.00002 建议微调场景的学习率设置在10-5这个量级。
镜像中已包含训练代码则不需要配置。 需要提前将代码上传至OBS桶中,目录内文件总大小要小于或等于5GB,文件数要小于或等于1000个,文件深度要小于或等于32。 训练代码文件会在训练作业启动的时候被系统自动下载到训练容器的“${MA_JOB_DIR}/demo-code”目录中,
表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
内置属性:图像尺寸(图像的宽度、高度、深度),类型为List[/topic/body/section/table/tgroup/tbody/row/entry/p/br {""}) (br]。列表中的第一个数字为宽度(像素),第二个数字为高度(像素),第三个数字为深度(深度可以没有,默认为3),如[100
内置属性:图像尺寸(图像的宽度、高度、深度),类型为List[/topic/body/section/table/tgroup/tbody/row/entry/p/br {""}) (br]。列表中的第一个数字为宽度(像素),第二个数字为高度(像素),第三个数字为深度(深度可以没有,默认为3),如[100
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。