检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
updateWorkforceSamplingTask 提交验收任务的样本评审意见 dataset acceptSamples 给样本添加标签 dataset updateSamples 发送邮件给团队标注任务的成员 dataset sendEmails 接口人启动团队标注任务 dataset startWorkforceTask
] } 相关案例 更多权限配置案例如下,根据实际需要参考。 给子用户配置开发环境基本使用权限 给子用户配置训练作业基本使用权限 给子用户配置部署上线基本使用权限 管理员和开发者权限分离 限制用户使用公共资源池 给子用户配置文件夹级的SFS Turbo访问权限 查看所有子账号的Notebook实例
ModelArts与其他服务的关系 图1 ModelArts与其他服务的关系示意图 与统一身份认证服务的关系 ModelArts使用统一身份认证服务(Identity and Access Management,简称IAM)实现认证功能。IAM的更多信息请参见《统一身份认证服务用户指南》。
如果需要对委托授权的权限范围进行精确控制,可以参考本章节进行MaaS服务的定制化委托授权。 本章节主要介绍如何给IAM用户下的子用户配置更细粒度的权限。 前提条件 给用户组授权之前,请先了解用户组可以添加的使用ModelArts及其依赖服务的权限,并结合实际需求进行选择,MaaS服务支持的系统权限,请参见表1。
模式下,当前字段不生效。 environments Array of Map<String,String> objects 训练作业的环境变量。格式:"key":"value",无需填写。 summary Summary object 可视化日志summary。 表8 Parameter
注册API并授权给APP 功能介绍 注册API并将API授权给APP,只有对服务有更新权限的华为云用户可以调用。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST
查询处理任务列表 功能介绍 查询处理任务列表,包括“特征分析”任务和“数据处理”两大类任务。可通过指定“task_type”参数来单独查询某类任务的列表。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是
解析传递进decrypt_func方法中,进行解密。 其他类似自定义加密的方法,会在保存Token到本地时进行加密。 配置CLI工具的环境变量,指定到上一步新建的配置文件。 export SDK_CONFIG_PATH=/gallerycli/config.env #
1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以llama2-13b预训练为例:
项目流程设计。 流程定义与重定义:以流水线作为承载项,用户能快速定义AI项目,实现训练+推理上线的工作流设计。 资源分配:支持账号管理机制给流水线中的参与人员(包含开发者和运维人员)分配相应的资源配额与权限,并查看相应的资源使用情况等。 时间安排:围绕子流水线配置相应的子任务安排
查看ModelArts模型详情 查看模型列表 当模型创建成功后,您可在模型列表页查看所有创建的模型。模型列表页包含以下信息。 表1 模型列表 参数 说明 模型名称 模型的名称。 最新版本 模型的当前最新版本。 状态 模型当前状态。 部署类型 模型支持部署的服务类型。 版本数量 模型的版本数量。
ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理
使用ModelArts Standard自动学习实现口罩检测 该案例是使用华为云一站式AI开发平台ModelArts的新版“自动学习”功能,基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“物体检测”的AI模型的训练和部署。依据开发者提供的标注
1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以llama2-13b预训练为例:
过编辑 1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如
str model_name 模型名称 是 str或者Placeholder model_version 模型版本 否 str envs 环境变量 否 dict delay 服务部署相关信息是否在节点运行时配置,默认为True 否 bool 示例: example = Service
Msprobe API预检 Msprobe是MindStudio Training Tools工具链下精度调试部分的工具包,主要包括精度预检、溢出检测和精度比对等功能,目前适配PyTorch和MindSpore框架。这些子工具侧重不同的训练场景,可以定位模型训练中的精度问题。 精
创建自动模型优化的训练作业 背景信息 如果用户使用的AI引擎为pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64和tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64,并且优化
码中可以直接引用 │ │ ├──mnist_mlp.pt 必选,pytorch模型保存文件,保存为“state_dict”,存有权重变量等信息。 │ │ ├──config.json 必选:模型配置文件,文件名称固定为config.json,只允许放置一个 │ │
"nfs_server_path": "xxx.xxx.xxx.xxx:/" } }] env_variables 否 Dict 训练作业的环境变量。 pool_id 否 String 训练作业选择的资源池ID。可在ModelArts管理控制台,单击左侧“专属资源池”,在专属资源池列表中查看资源池ID。