检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
cli是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Qwen/Qwen-VL-Chat为例: huggingface-cli download --resume-download
本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts
ggingFace权重文件和转换操作结果同时适用于SFT微调和LoRA微调训练。 HuggingFace权重转换操作 这里以Qwen-14B为例,Qwen-7B和Qwen-72B只需按照实际情况修改环境变量参数即可。 下载Qwen-14B的预训练权重和词表文件,并上传到/home
project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 name 否 String 镜像名称,长度限制512个字符,支持小写字母、数字、中划线、下划线和点。 name_fuzzy_match 否 Boolean 镜像名称是否模糊匹配,默认为true。
资产的公开权限和版本信息暂不支持修改。 修改封面图和二级标题 在发布的资产详情页面,单击右侧的“编辑”,选择上传新的封面图,为资产编辑独特的主副标题。 编辑完成之后单击“保存”,封面图和二级标题内容自动同步,您可以直接在资产详情页查看修改结果。 图4 修改封面图和二级标题 编辑标签
如果训练启动脚本用的是sh文件,例如“main.sh”,则启动命令如下所示。 bash ${MA_JOB_DIR}/demo-code/main.sh 启动命令支持使用“;”和“&&”拼接多条命令,命令中的“demo-code”为存放代码目录的最后一级OBS目录,以实际情况为准。 本地代码目录 指定训练容器的本地目
本章节主要介绍如何将HuggingFace权重转换为Megatron格式。此处的HuggingFace权重文件和转换操作结果同时适用于SFT全参微调和LoRA微调训练。 HuggingFace权重转换操作 下载GLM3-6B的预训练权重和词表文件,并上传到/home/ma-user/ws/tokenizers/G
本章节主要介绍如何将HuggingFace权重转换为Megatron格式。此处的HuggingFace权重文件和转换操作结果同时适用于SFT全参微调和LoRA微调训练 HuggingFace权重转换操作 下载Llama2-70B的预训练权重和词表文件,并上传到/home/ma-user/ws/tokenizers/
图1 下拉选择标注类型 在标注作业标注详情中,展示此标注作业下全部数据。 标注视频 标注作业详情页中,展示了此数据集中“未标注”、“已标注”和“全部”的视频。 在“未标注”页签左侧视频列表中,单击目标视频文件,打开标注页面。 在标注页面中,播放视频,当视频播放至待标注时间时,单击进
本例的Dockerfile将基于MindSpore基础镜像mindspore1.7.0-cann5.1.0-py3.7-euler2.8.3,升级到cann 5.1.RC2和MindSpore1.8.1,构建一个面向AI任务的镜像。 加载镜像模板后,Dockerfile文件自动加载,在“.ma/upgrade_ascend_mindspore_1
用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 limit 否 Integer 每一页的数量,默认值200。 name 否 String 镜像名称,长度限制512个字符,支持小写字母、数字、中划线、下划线和点。 name_fuzzy_match
e-cli是Hugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta
e-cli是Hugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta
e-cli是Hugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta
e-cli是Hugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta
e-cli是Hugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta
e-cli是Hugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta
数据集ID。 label_name 是 String 标签名称。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 label_type 否 Integer 标签类型。可选值如下: 0:图像分类
关闭“内容审核”开关,需要在弹窗中确认是否停用内容审核服务,勾选“我已阅读并同意上述说明”后,单击“确定”关闭。 在“调用说明”页面,选择接口类型,复制调用示例,修改接口信息和API Key后用于业务环境调用模型服务API。 Python示例代码如下所示: 使用普通requests包调用。 import requests
文本分类:对文本的内容按照标签进行分类处理。 命名实体:针对文本中的实体片段进行标注,如“时间”、“地点”等。 文本三元组:针对文本中的实体片段和实体之间的关系进行标注。 视频 视频标注:识别出视频中每个物体的位置及分类。目前仅支持mp4格式。 智能标注 除了人工标注外,ModelAr