检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts中如何查看OBS目录下的所有文件? 在使用Notebook或训练作业时,需要查看目录下的所有文件,您可以通过如下方式实现: 通过OBS管理控制台进行查看。 使用当前账户登录OBS管理控制台,去查找对应的OBS桶、文件夹、文件。 通过接口判断路径是否存在。在已有
在ModelArts中训练好后的模型如何获取? 使用自动学习产生的模型只能在ModelArts上部署上线,无法下载至本地使用。 使用自定义算法或者订阅算法训练生成的模型,会存储至用户指定的OBS路径中,供用户下载。 父主题: Standard模型训练
本文旨在帮助您了解ModelArts的基本使用流程以及相关的常见问题,帮助您快速上手ModelArts服务。 面向不同AI基础的开发者,本文档提供了相应的入门教程,帮助用户更快速地了解ModelArts的功能,您可以根据经验选择相应的教程。 面向AI开发零基础的用户,您可以使用ModelArts在AI
py命令,即可将py文件内容加载到ipynb中。 以“test.py”文件为例,下图展示了如何将“test.py”的文件内容加载到ipynb文件中。 图1 test.py文件 图2 将“test.py”文件内容加载到.ipynb文件里 图3 加载后的ipynb文件 父主题: Standard Notebook
在ModelArts的Notebook中如何在代码中打印GPU使用信息? 用户可通过shell命令或python命令查询GPU使用信息。 使用shell命令 执行nvidia-smi命令。 依赖CUDA nvcc watch -n 1 nvidia-smi 执行gpustat命令。
在ModelArts训练代码中,如何获取依赖文件所在的路径? 由于用户本地开发的代码需要上传至ModelArts后台,训练代码中涉及到依赖文件的路径时,用户设置有误的场景较多。因此推荐通用的解决方案:使用os接口得到依赖文件的绝对路径,避免报错。 以下示例展示如何通过os接口获得其他文件夹下的依赖文件路径。
被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值
在ModelArts的Notebook中如何查看GPU使用情况? 创建Notebook时,当您选择的类型为GPU时,查看GPU使用情况具体操作如下: 登录ModelArts管理控制台,选择“开发空间>Notebook”。 在Notebook列表中,单击目标Notebook“操作”列的“打开”,进入“Jupyter”开发页面。
如何将Keras的.h5格式的模型导入到ModelArts中? ModelArts不支持直接导入“.h5”格式的模型。您可以先将Keras的“.h5”格式转换为TensorFlow的格式,然后再导入ModelArts中。 从Keras转TensorFlow操作指导请参见其官网指导。
blue bird"}' 执行成功显示: 图2 执行成功显示 在浏览器输入http://{宿主机ip}:8183,可以访问前端页面,通过输入文字生成图片。 图3 输入文字生成图片 注意需要勾选Enable Flash Attention按钮。 图4 Enable Flash Attention优化按钮
在ModelArts训练时如何安装C++的依赖库? 在训练作业的过程中,会使用到第三方库。以C++为例,请参考如下操作步骤进行安装: 将源码下载至本地并上传到OBS。使用OBS客户端上传文件的操作请参见上传文件。 将上传到OBS的源码使用Moxing复制到开发环境Notebook中。
ExportKeys.TF_SERVING) 如果标签发生变化 当数据集中的标签发生变化时,需要执行如下语句。此语句需在“mox.run”之前运行。 语句中的“logits”,表示根据不同网络中分类层权重的变量名,配置不同的参数。此处填写其对应的关键字。 mox.set_flag('checkpoi
希望提升训练效率,同时减少与对象存储OBS的交互。可通过如下方式进行调整优化。 优化原理 对于ModelArts提供的GPU资源池,每个训练节点会挂载500GB的NVMe类型SSD提供给用户免费使用。此SSD挂载到“/cache”目录,“/cache”目录下的数据生命周期与训练作业生命周期相同,当训练作
数据源信息,详细请见表3。 width Long 图片长度。 height Long 图片高度。 depth Long 图片深度。 segmented String 分割。 mask_source String 图像分割得到的mask文件的云存储路径,目前只支持PNG格式。 voc_objects
scope参数定义了Token的作用域,示例中获取的Token仅能访问project下的资源。Modelarts使用区域的Endpoint(非全局域名)调用该接口,推荐您将scope设置为project。您还可以设置Token作用域为某个账号下所有资源或账号的某个project下的资源,详细定义请参见获取用户Token。
单击右侧的“立即创建”,创建一个组织。创建组织的详细操作请参见创建组织。 同一个组织内的用户可以共享使用该组织内的所有镜像。 镜像会以快照的形式保存,保存过程约5分钟,请耐心等待。此时不可再操作实例(对于打开的JupyterLab界面和本地IDE仍可操作)。 快照中耗费的时间仍占
推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
框重新标注,如图中的“漏检”目标框,然后需要将原先标注错误的目标框删除,即“误检”标签框。手工调整后,单击“确认标注”完成难例确认。 图1 物体检测的难例确认 针对“图像分类”标注作业 在“待确认”页签中,查看标注难例的图片,其添加的标签是否准确。勾选标注不准确的图片,删除错误标
欠费后,ModelArts的资源是否会被删除? 欠费后,ModelArts的资源不会被立即删除。 欠费后,您可以在“费用中心”查看欠费详情。为了防止相关资源不会被停止服务或者逾期释放,您需要及时进行还款或充值。 查询欠费步骤 登录管理控制台。 单击页面右上角的“费用”进入“费用中心”页面。
背景信息 目前只有“图像分类”和“物体检测”类型的标注作业支持智能标注功能。 启动智能标注时,需标注作业存在至少2种标签,且每种标签已标注的图片不少于5张。 启动智能标注时,必须存在未标注图片。 启动智能标注前,保证当前系统中不存在正在进行中的智能标注任务。 检查用于标注的图片数据,确保