检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
是观感上的色彩丰富程度,一般用于比较训练集和真实场景数据集的差异。 按单张图片中框的个数统计图片分布 Bounding Box Quantity 横坐标:单张图片中框的个数。 纵坐标:图片数量。 对模型而言一张图片的框个数越多越难检测,需要越多的这种数据用作训练。 按单张图片中框的面积标准差统计图片分布 Standard
生成1280x1280图片,使用Ascend: 1* ascend-snt9b(64GB),约耗时7.5秒。 图1 生成图片耗时(1) 生成1280x1280图片,使用Ascend: 1* ascend-snt9b(32GB),约耗时9.3秒。 图2 生成图片耗时(2) 不开启Flash
标注多个标签,是否可针对一个标签进行识别? 数据标注时若标注多个标签进行训练而成的模型,最后部署成在线服务之后也是对标注的多个标签去进行识别的。如果只需要快速识别一种标签,建议单独训练识别此标签的模型使用,并选择较大的部署上线的规格也可以提供识别速度。 父主题: Standard数据管理
下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。
创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 图像分类项目,图片标注至少需要两个类别,且每个类别至少5张图片,才可以开始自动训练。 父主题: 模型训练
Standard数据管理 添加图片时,图片大小有限制吗? 数据集图片无法显示,如何解决? 如何将多个物体检测的数据集合并成一个数据集? 导入数据集失败 表格类型的数据集如何标注 本地标注的数据,导入ModelArts需要做什么? 为什么通过Manifest文件导入失败? 标注结果存储在哪里? 如何将标注结果下载至本地?
推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
在pipeline适配完成后,需要验证适配后的效果是否满足要求,通过对比原始onnx pipeline的最终输出结果确认迁移效果。如果精度和性能都没有问题,则代表迁移完成。 对比图片生成效果 在CPU上推理onnx,将原始onnx和适配完成的MindSpore Lite pipeline输出的结果图片进行对比,在
可以两个账号同时进行一个数据集的标注吗? 可以多人同时标注,但多人同时对同一张图片标注的话,只会以最后一个保存的人的标注结果为最终标注结果。建议轮流标注并及时保存标注结果。 父主题: Standard数据管理
自动学习中偏好设置的各参数训练速度大概是多少 偏好设置中: performance_first:性能优先,训练时间较短,模型较小。对于TXT、图片类训练速度为10毫秒。 balance:平衡 。对于TXT、图片类训练速度为14毫秒 。 accuracy_first:精度优先,训练
如何处理使用opencv.imshow造成的内核崩溃? 问题现象 当在Notebook中使用opencv.imshow后,会造成Notebook崩溃。 原因分析 opencv的cv2.imshow在jupyter这样的client/server环境下存在问题。 而matplotlib不存在这个问题。
如何处理使用opencv.imshow造成的内核崩溃? 问题现象 当在Notebook中使用opencv.imshow后,会造成Notebook崩溃。 原因分析 opencv的cv2.imshow在jupyter这样的client/server环境下存在问题。 而matplotlib不存在这个问题。
使用订阅算法训练结束后没有显示模型评估结果 问题现象 AI Gallery中的YOLOv5算法,训练结束后没有显示模型评估结果。 原因分析 未标注的图片过多,导致没有模型评估结果。 处理方法 对所有训练数据进行标注。 父主题: 预置算法运行故障
数据集要求 保证图片质量:不能有损坏的图片,目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。 每一类数据尽量多,尽量均衡。期望获得良好效果,图像分类项目中,至少有两种以上的分类,每种分类的样本不少于20张。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。
上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。
上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。
被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值
执行3。 自动学习项目不同导致的失败原因可能不同。 图像识别训练失败请检查是否存在损坏图片,如有请进行替换或删除。 物体检测训练失败请检查数据集标注的方式是否正确,目前自动学习仅支持矩形标注。 预测分析训练失败请检查标签列的选取。标签列目前支持离散和连续型数据,只能选择一列。 声
该案例是使用华为云一站式AI开发平台ModelArts的新版“自动学习”功能,基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“物体检测”的AI模型的训练和部署。依据开发者提供的标注数据及选择的场景,无需任何代码开发,自动生成满足用户精度要求的模型。可支持图片分类、物体检测、预测
识别图片中的人物是否佩戴口罩。 垃圾分类 自动学习 图像分类 该案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“图像分类”的AI模型的训练和部署。 ModelArts Standard开发环境案例 表2 Notebook样例列表 样例 镜像