检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
容器运行时的用户ID。 “本地代码目录” 训练代码在训练容器中的存放路径。 “工作目录” 训练启动文件在训练容器中的路径。 “实例数” 本次训练作业设置的实例数。 “专属资源池” 专属资源池信息,仅当训练作业使用专属资源池时可见。 “实例规格” 本次训练作业使用的训练规格。 “输入-输入路径”
团队标注任务当前验收任务详情。 create_time Long 标注任务创建时间。 dataset_id String 数据集ID。 description String 标注任务描述信息。 label_stats Array of LabelStats objects 标注任务标签统计信息。
time per iteration)×1000,其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能
6,默认global batch size为64;其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可
time per iteration)*1000,其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定
time per iteration)*1000,其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定
验证准确度与CPU/GPU差异不符合预期。 在迁移到NPU环境下训练发现以上问题时,说明精度可能存在偏差,需要进一步做精度调优。下文将分别阐述精度诊断的整体思路和如何借助精度工具进行精度问题的定位。 父主题: PyTorch迁移精度调优
“标签名”或从下拉列表中选择已添加的标签。单击“确定”,完成选中图片的标注操作。例如,您可以选择多张图片,按照花朵种类将图片标注为“tulips”。同样选择其他未标注分类图片,将其标注为“sunflowers”、“roses”等。标注完成后,图片将存储至“已标注”页签下。 图片标
之前,您需要了解: 标注作业对应的“实体标签”和“关系标签”已定义好。“关系标签”需设置对应的“起始实体”和“终止实体”。“关系标签”只能添加至其设置好的“起始实体”和“终止实体”之间。 支持设置多个“实体标签”和“关系标签”。一个文本数据中,也可以标注多个“实体标签”和“关系标签”
time per iteration)*1000,其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定
time per iteration)*1000,其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定
time per iteration)*1000,其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定
time per iteration)*1000,其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定
time per iteration)*1000,其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定
用户/训练系统,将CUDA_VISIBLE_DEVICES传错了,检查CUDA_VISIBLE_DEVICES变量是否正常。 用户选择了1/2/4卡这些规格的作业,然后设置了CUDA_VISIBLE_DEVICES=‘1’这种类似固定的卡ID号,与实际选择的卡ID不匹配。 处理方法 尽量代码里不要去修改CUD
2,默认global batch size为64;其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可
6,默认global batch size为64;其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可
String API的认证方式。枚举值如下: NONE:无认证 APP:APP认证 IAM:IAM认证 predict_url String 预测地址。 service_id String 服务编号。 service_name String 服务名称。 support_app_code Boolean
"data_path" : "/test-obs/classify/input/cat-dog/" } ], "description" : "", "work_path" : "/test-obs/classify/output/", "work_path_type"
5之间的整数。 是否自动停止:启用该参数并设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。 目前支持设置为“1小时后”、“2小时后”、“4小时后”、