检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用任务的基础能力,但还没有针对特定的业务场景进行优化。预训练后的模型主要用于多个任务的底层支持。 通过使用海量的互联网文本语料对模型进行预训练,使模型理解人类语言的基本结构。 微调 关注专业性:微调是对预训练模型的参数进行调整,使其在特定任务中达到更高的精度和效果。微调的核心在于
根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,
预付费,按照订单的购买周期结算 1个月~1年 训练服务 训练服务 按需计费 训练单元 后付费,根据服务实际消耗量计费 按实际任务时长,时长精确到秒。 包周期计费 训练单元 预付费,按照订单的购买周期结算 1个月~1年 推理服务 推理服务 包周期计费 推理单元 预付费,按照订单的购买周期结算
停止计费 包周期服务到期后,保留期时长将根据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 按需计费模式下,若账户欠费,保留期时长同样依据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 如果保留期结束后仍未续订或充值,数据将被删除且无法恢复。
学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。 如果学习率过小,模型的收敛速度将变得非常慢。 训练轮数 表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 Lora矩阵的轶 较高的取值意味着更多的参数被更新,模型具有更大的灵活性,
Agent开发平台是基于NLP大模型,致力打造智能时代集开发、调测和运行为一体的AI应用平台。无论开发者是否拥有大模型应用的编程经验,都可以通过Agent平台快速创建各种类型的智能体。Agent开发平台旨在帮助开发者高效低成本的构建AI应用,加速领域和行业AI应用的落地。 针对“零码”开发者(无代码开发经验),
类型、值:选择“引用 > query”。query为开始节点的输出变量值。 在“模型配置”中,选择模型并进行参数配置。 在“意图配置”中,填写场景意图。 其中,意图的内容为针对该场景的描述语句或关键词,同时也将作为大模型进行推理和分类的依据,数量为2 ~ 5个。 在“高级配置”中配置提示词。单击“确定”,完成参数配置。
模型选择 选择已部署的模型。 核采样 模型在输出时会从概率最高的词汇开始选择,直到这些词汇的总概率累积达到核采样值,核采样值可以限制模型选择这些高概率的词汇,从而控制输出内容的多样性。建议不要与温度同时调整。 温度 用于控制生成结果的随机性。调高温度,会使得模型的输出更具多样性和创
在Agent开发平台上,用户可以构建两种类型的应用: 知识型Agent:以大模型为任务执行核心,适用于文本生成和文本检索任务,如搜索问答助手、代码生成助手等。用户通过配置Prompt、知识库等信息,使得大模型能够自主规划和调用工具。 优点:零代码开发,对话过程智能化。 缺点:大模型在面对复杂的、长链条的流程时可能
用户Token。 用于获取操作API的权限。获取Token接口响应消息头中X-Subject-Token的值即为Token。 Content-Type 是 String 发送的实体的MIME类型,参数值为“application/json”。 使用AppCode认证方式的请求Header参数见表2。
cnop噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。 ensemble_noise_perlin_scale
Face团队推出的一种大模型请求格式。 接口的响应体需要按照jsonpath语法要求进行填写,jsonpath语法的作用是从响应体的json字段中提取出所需的数据。 评测配置 评测类型 选择“自动评测”。 评测规则 选择“基于规则”。 评测数据集 评测模板:使用预置的专业数据集进行评测。
了解每种计费项的详细信息,请参考计费项。 续费 包周期资源到期后,如果您想继续使用服务,需要在保留期内进行手动续费,否则不能再对已过保留期的服务进行续费操作,需重新购买对应的服务。了解更多关于续费的信息,请参见续费。 欠费 在使用云服务时,账户的可用额度小于待结算的账单,即被判定
升级配置后,需重新启动该部署任务,升级模式即为重启的方式。 修改部署配置 完成创建预测大模型部署任务后,可以修改已部署模型的描述信息并升级配置,但不可替换模型。具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发
升级配置后,需重新启动该部署任务,升级模式即为重启的方式。 修改部署配置 完成创建专业大模型部署任务后,可以修改已部署模型的描述信息并升级配置,但不可替换模型。具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发
升级配置后,需重新启动该部署任务,升级模式即为重启的方式。 修改部署配置 完成创建科学计算大模型部署任务后,可以修改已部署模型的描述信息并升级配置,但不可替换模型。具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发
搜索增强通过结合大语言模型与传统搜索引擎技术,提升了搜索结果的相关性、准确性和智能化。 例如,当用户提出复杂查询时,传统搜索引擎可能仅返回一系列相关链接,而大模型则能够理解问题的上下文,结合多个搜索结果生成简洁的答案,或提供更详细的解释,从而进一步改善用户的搜索体验。 温度 用于控制生成文本的多样性和创造力。调高温度会使得模型的输出更多样性和创新性。
升级配置后,需重新启动该部署任务,升级模式即为重启的方式。 修改部署配置 完成创建NLP大模型部署任务后,可以修改已部署模型的描述信息并升级配置,但不可替换模型。具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发
升级配置后,需重新启动该部署任务,升级模式即为重启的方式。 修改部署配置 完成创建CV大模型部署任务后,可以修改已部署模型的描述信息并升级配置,但不可替换模型。具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发
填写输入参数时,deployment_id为模型部署ID,获取方式如下: 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图3 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发 >