检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
盘古大模型是否可以自定义人设? 如何将本地的数据上传至平台? 导入数据过程中,为什么无法选中OBS的具体文件进行上传? 如何查看预置模型的历史版本? 更多 大模型微调训练类 如何调整训练参数,使盘古大模型效果最优? 为什么微调后的盘古大模型的回答中会出现乱码? 如何判断盘古大模型训练状态是否正常?
了。李晓在宋朝的生活充满了挑战。他必须学习如何使用新的语言,适应新的生活方式。他开始学习宋朝的礼仪,尝试理解这个时代的文化。在宋朝,李晓遇到了许多有趣的人。他遇到了一位名叫赵敏拿来的小女孩,她聪明伶俐,让李晓对她产生了深深的喜爱。他还遇到了一位名叫王安石的大儒,他的智慧和博学让李
资源到期了如何续费 包年/包月方式购买的资源到期后,请在平台订购管理页面进行续订操作。具体步骤如下: 登录ModelArts Studio大模型开发平台,单击页面右上角“订购管理”。 在“订购管理”页面,单击“资源订购”页签。 在“资源订购”页签可进行数据资源、训练资源、推理资源的续费操作。
准备工作 申请试用盘古大模型服务 订购盘古大模型服务 配置服务访问授权 创建并管理盘古工作空间
此示例演示了如何使用盘古预置NLP大模型进行对话问答,包含两种方式:使用“能力调测”功能和调用API接口。 您将学习如何使用“能力调测”功能调试模型超参数、如何调用盘古NLP大模型API以实现智能化对话问答能力。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。
download obs file failed. 请检查网络是否正常,是否可以访问OBS桶中的数据。 数据评估 annotate type is invalid. 请检查上传的数据中,使用的数据标注类型、数据标注要求与平台要求的是否一致。 annotate data not exist. 待评
场景描述 该示例演示了如何使用盘古应用百宝箱生成创意活动方案。 应用百宝箱是盘古大模型服务为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 操作流程 使用盘古应用百宝箱生成创意活动方案的步骤如下: 登录ModelArts
服务,便捷地构建自己的模型和应用。 数据工程工具链:数据是大模型训练的核心基础。数据工程工具链作为平台的重要组成部分,具备数据获取、数据加工和数据发布等功能,确保数据的高质量与一致性。工具链能够高效收集并处理各种格式的数据,满足不同训练任务的需求,并提供强大的数据存储和管理能力,为大模型训练提供坚实的数据支持。
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 获取调用路径。 在左侧导航栏中选择“模型开发 > 模型部署”。 获取已部署模型的调用路径。在“我的服务”页签,单击状态为“运行中”的模型名称,在“详情”页签,可获取模型调用路径,如图1。 图1 获取已部署模型的调用路径 获取预置服务的调用路
如何调用REST API 构造请求 认证鉴权 返回结果
如何让大模型按指定风格或格式回复 要让模型按照特定风格回复,可以提供领域和角色信息(如目标受众或特定场景),帮助模型理解并捕捉预期风格。 可以在提示词中,明确描述回复风格的要求。例如,若希望模型回答更精炼,可以提示: 你的回复“需要简洁精炼”、“仅包括最重要的信息”或“专注于主要结论”。
业务逻辑的复杂性 判断任务场景的业务逻辑是否符合通用逻辑。如果场景中的业务逻辑较为简单、通用且易于理解,那么调整提示词是一个可行的方案。 例如,对于一般的常规问题解答等场景,可以通过在提示词中引导模型学习如何简洁明了地作答。 如果场景涉及较为复杂、专业的业务逻辑(例如金融分析、医疗诊断等),则需要更为精确的处理方式:
提示词工程类 如何利用提示词提高大模型在难度较高推理任务中的准确率 如何让大模型按指定风格或格式回复 如何分析大模型输出错误回答的根因 为什么其他大模型适用的提示词在盘古大模型上效果不佳 如何判断任务场景应通过调整提示词还是场景微调解决
无监督领域知识数据量无法支持增量预训练,如何进行模型学习 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码 为什么微调后的盘古大模型的回答会异常中断
趋势。一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 以下给出了几种正常的Loss曲线形式: 图1 正常的Loss曲线:平滑下降 图2 正常的Loss曲线:阶梯下降 如果您发现Loss曲线出现了以下几种情况,可能意味着模型训练状态不正常:
您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。 请注意,温度和核采样的作用相近,在实际使用中,为了更好观察是哪个参数对结果造成的影响,因此不建议同时调整这两个参数。 如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。
如何调整训练参数,使盘古大模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例如
意图识别节点响应意图的准确性。本实践的意图识别节点包含文本翻译意图和其他意图。 文本翻译意图:当用户请求翻译时,意图识别节点的关键任务是准确判断用户翻译的需求,执行翻译节点分支,并给出正确的翻译结果。 如图1,当用户输入翻译类问题时,“意图识别”节点对用户的意图分类为“文本翻译”