检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件
优化器:常用的优化器包括Adam、SGD等,用于调整模型参数以最小化损失函数。 B. 训练过程 批量训练:将训练数据分成小批量,逐批输入模型进行训练。 评估与调整:在训练过程中,定期评估模型在验证集上的性能,并根据需要调整模型参数和结构。 下面是一个训练模型的示例代码: # 示例训练数据 X_train
创建工程 创建训练工程是从创建模型训练工程、编辑模型训练代码到调试模型训练代码的端到端的代码开发过程。 创建模型训练工程:创建模型训练代码编辑和调试的环境。 编辑模型训练代码:在线编辑模型训练代码。 调试模型训练代码:在线调试编辑好的模型训练代码。 创建训练工程步骤如下。 单击“创建”,弹出“创建训练”对话框。
llama2-13b 输入选择训练的模型名称。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE GeneralPretrainHandler 示例值需要根据数据集的不同,选择其一。 GeneralPretrainHandler:使用预训练的alpaca数据集。
当对创建的训练作业不满意时,您可以单击操作列的重建,重新创建训练作业。在重创训练作业页面,会自动填入上一次训练作业设置的参数,您仅需在原来的基础上进行修改即可重新创建训练作业。 停止训练作业 在训练作业列表中,针对“创建中”、“等待中”、“运行中”的训练作业,您可以单击“操作”列的“终止”,停止正在运行中的训练作业。
训练日志失败分析 在ModelArts Standard中训练作业遇到问题时,可首先查看日志,多数场景下的问题可以通过日志报错信息直接定位。 ModelArts Standard提供了训练作业失败定位与分析功能,如果训练作业运行失败,ModelArts会自动识别导致作业失败的原因
前提条件 已经注册华为云账号。 已经创建IAM用户。 已经订购过NAIE模型训练服务。 父主题: 使用模型训练服务快速训练算法模型
heckpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint继续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置继续训练,加载中断生成的checkp
Shell中单击回车键即可恢复正常。 图3 路径异常 如何使训练作业保持运行中状态 由于需要训练作业处于“运行中”状态才能登录Cloud Shell,因此本文介绍如何使训练作业保持运行中状态,方便您快速通过Cloud Shell登录运行中的训练容器。 通过Sleep命令使训练作业保持运行 如果训练作业使用的是预置框架:
训练作业卡死检测 什么是训练作业卡死检测 训练作业在运行中可能会因为某些未知原因导致作业卡死,如果不能及时发现,就会导致无法及时释放资源,从而造成极大的资源浪费。为了节省训练资源成本,提高使用体验,ModelArts提供了卡死检测功能,能自动识别作业是否卡死,并在日志详情界面上展
tputs/train_url_0" train_url = args.train_url # 判断输出路径中是否有模型文件。如果无文件则默认从头训练,如果有模型文件,则加载epoch值最大的ckpt文件当做预训练模型。 if os.listdir(train_url):
支持用户通过本地上传或者AI市场导入的方式,导入模型包。 2 模型包名称 模型包的名称。 版本 模型包生成时的版本。 模型类型 模型的AI算法框架类型。 运行环境 AI算法框架匹配的Python语言版本。 创建时间 模型包生成的时间。 来源 模型包的来源。包括模型训练服务、本地上传和AI市场导入三种来源。
使用模型训练服务快速训练算法模型 本文档以硬盘故障检测的模型训练为例,介绍模型训练服务使用的全流程,包括数据集、特征工程、模型训练、模型管理和模型验证,使开发者快速熟悉模型训练服务。 操作流程 前提条件 订购模型训练服务 访问模型训练服务 创建项目 数据集 特征工程 模型训练 模型管理
方式搜索日志。 :将当前训练工程加入训练。 :返回到当前训练工程所在的“模型训练”页面。 训练任务:查看训练任务的运行状态。可以查看训练任务的运行日志以及训练报告,删除训练任务。也可以在任务执行过程中单击暂停训练任务。 3 代码目录:包含日志文件夹、模型文件存放文件夹、调试文件、requirements
准备模型训练代码 预置框架启动文件的启动流程说明 开发用于预置框架训练的代码 开发用于自定义镜像训练的代码 自定义镜像训练作业配置节点间SSH免密互信 父主题: 使用ModelArts Standard训练模型
job-dir/code/train.py 使用Ascend自定义镜像训练时的训练代码适配规范 使用NPU资源创建训练作业时,系统会在训练容器里自动生成Ascend HCCL RANK_TABLE_FILE文件。当使用预置框架创建训练作业时,在训练过程中预置框架会自动解析Ascend
选择所需微调的基础模型。 训练参数 数据集 训练数据集。 自定义L1预训练模型目录 自定义预训练模型所在的OBS路径。 训练轮数 表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 是否使用自定义L1预训练模型 是否使用自定义预训练模型进行训练,模型为用户与服务共建,详情请联系客服。
模型训练必备要素包括训练代码、训练框架、训练数据。 训练代码包含训练作业的启动文件或启动命令、训练依赖包等内容。 当使用预置框架创建训练作业时,训练代码的开发规范可以参考开发用于预置框架训练的代码。 当使用自定义镜像创建训练作业时,训练代码的开发规范可以参考开发用于自定义镜像训练的代码。