检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
编辑训练代码(WebIDE) 支持使用WebIDE开发环境编辑代码。 可选择下述一种方式,进入WebIDE开发环境编辑代码: 在“模型训练”菜单页面,“开发环境”为WebIDE环境的情况下,单击模型训练工程所在行的。 在“模型训练”菜单页面,单击模型训练工程所在行,进入详情界面。
HardDisk-Detect_Train_Good.csv:无故障硬盘训练数据 HardDisk-Detect_Train_Fail.csv:故障硬盘训练数据 HardDisk-Detect_Test_Good.csv:无故障硬盘测试数据 HardDisk-Detect_Test_Fail.csv:故障硬盘测试数据
模型训练必备要素包括训练代码、训练框架、训练数据。 训练代码包含训练作业的启动文件或启动命令、训练依赖包等内容。 当使用预置框架创建训练作业时,训练代码的开发规范可以参考开发用于预置框架训练的代码。 当使用自定义镜像创建训练作业时,训练代码的开发规范可以参考开发用于自定义镜像训练的代码。
创建模型训练工程 创建工程 编辑训练代码(简易编辑器) 编辑训练代码(WebIDE) 模型训练 MindSpore样例 父主题: 模型训练
模型训练新建模型训练工程的时候,选择通用算法有什么作用? 通用算法目前包括:分类算法、拟合算法、聚类算法、其他类型。用户选择不同的通用算法类型,并勾选“创建入门模型训练代码”,便可以自动生成对应类型的代码模版。 父主题: 模型训练
模型训练 模型训练新建模型训练工程的时候,选择通用算法有什么作用? 使用训练模型进行在线推理的推理入口函数在哪里编辑? 通过数据集导入数据后,在开发代码中如何获取这些数据? 如何在模型训练时,查看镜像中Python库的版本? 如何在模型训练时,设置日志级别? 如何自定义安装python第三方库?
增量模型训练 什么是增量训练 增量训练(Incremental Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的
查看训练作业详情 登录ModelArts管理控制台。 在左侧导航栏中,选择“模型训练 > 训练作业”,进入“训练作业”列表。 在作业列表,单击“导出”,可以将训练作业根据时间周期导出Excel表到本地。最多只支持导出前200行数据。 在“训练作业”列表中,单击作业名称,进入训练作业详情页。
什么是模型训练服务 模型训练服务为开发者提供电信领域一站式模型开发服务,涵盖数据预处理、特征提取、模型训练、模型验证、推理执行和重训练全流程。服务提供开发环境和模拟验证环境及ICT网络领域AI资产,包括项目模板、算法、特征分析及处理SDK,帮助开发者提速AI应用开发,保障模型应用效果。
训练作业创建失败报错: 准备阶段超时。可能原因是跨区域算法同步或者创建共享存储超时 训练作业已排队,正在等待资源分配 训练作业排队失败 训练作业开始运行 训练作业运行成功 训练作业运行失败 训练作业被抢占 系统检测到您的作业疑似卡死,请及时前往作业详情界面查看并处理 训练作业已重启
多层嵌套异常检测学件 > 异常检测模型训练”,添加“异常检测模型训练”代码框。 图3 异常检测模型训练 单击“异常检测模型训练”代码框左侧的图标。等待模型训练完成。 可以通过屏幕打印信息,查看模型训练过程。屏幕会依次打印400个Epochs的模型训练评估结果。 父主题: 多层嵌套异常检测学件
模型训练 企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
任务名称:特征工程服务任务名称。示例:Train_Fail。 数据集:从下拉框中选择预置数据集“HardDisk-Detect(HardDisk)”。 数据实例:从下拉框中选择故障硬盘训练数据集“HardDisk-Detect_Train_Fail”。 目标数据集:从下拉框中选择预置
如何在模型训练时,查看镜像中Python库的版本? 模型训练时,在训练的代码中增加如下所示的代码行,执行训练即可查看: print(os.system("pip list")) 如果是JupyterLab环境,则在cell中执行如下命令: !pip list 如果是WebIDE环
模型验证 模型验证界面已经预置了模型验证服务,本次不使用,仅供参考。下面会提供端到端的操作流程,帮助用户快速熟悉模型验证界面操作。 单击菜单栏中的“模型验证”,进入模型验证界面。 可以看到预置的模型验证任务“hardisk-detect”。 单击“创建”,弹出如图1所示的对话框。
参数设置,重新选择使用的模型,或关闭特征搜索。 其中“排行榜”展示所有训练出的模型列表,支持对模型进行如下操作: 单击模型所在行对应“操作”列的“详情”,查看模型超参取值和模型评分结果。 单击模型所在行对应“操作”列的“预测”,在新增的“AutoML模型预测”内容中,选择测试数据
模型训练 导入SDK 选择数据 特征画像 模型选择 训练模型 测试模型 开发推理 归档模型 父主题: KPI异常检测学件服务
模型训练 模型训练简介 创建模型训练工程 创建联邦学习工程 创建训练服务 创建超参优化服务 创建Tensorboard 打包训练模型 父主题: 用户指南
15网络迁移工具,该工具适用于原生的Tensorflow训练脚本迁移场景,AI算法工程师通过该工具分析原生的TensorFlow Python API和Horovod Python API在昇腾AI处理器上的支持度情况,同时将原生的TensorFlow训练脚本自动迁移成昇腾AI处理器支持的脚本。对于无法自动
外安装软件包。 具体案例参考使用预置镜像制作自定义镜像用于训练模型。 场景二:已有本地镜像满足代码依赖的要求,但是不满足ModelArts训练平台约束,需要适配。 具体案例参考已有镜像迁移至ModelArts用于训练模型。 场景三: 当前无可使用的镜像,需要从0制作镜像(既需要安