检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
taskmanager.memory.task.heap.size:none 没有默认值,flink.size减去框架、托管、网络等得到。 算子逻辑,用户代码(如UDF)正常对象占用内存的地方。 taskmanager.memory.task.off-heap.size:0 默认值为0,task使用的off
rkSQL应用程序的资源,也就是说不同的用户之间可以共享数据。JDBCServer启动时还会开启一个侦听器,等待JDBC客户端的连接和提交查询。所以,在配置JDBCServer的时候,至少要配置JDBCServer的主机名和端口,如果要使用hive数据的话,还要提供hive metastore的uris。
SQL根据spark.sql.shuffle.partitions配置指定shuffle时的partition个数。此种方法在一个应用中执行多种SQL查询时缺乏灵活性,无法保证所有场景下的性能合适。开启Adaptive Execution后,Spark SQL将自动为每个shuffle过程动
SQL根据spark.sql.shuffle.partitions配置指定shuffle时的partition个数。此种方法在一个应用中执行多种SQL查询时缺乏灵活性,无法保证所有场景下的性能更优。开启Adaptive Execution后,Spark SQL将自动为每个shuffle过程动
running = false } } } 生成Table1和Table2,并使用Join对Table1和Table2进行联合查询,打印输出结果。 object SqlJoinWithSocket { def main(args: Array[String]):
Colocation为locator分配数据节点的时候,locator的分配算法会根据已分配的情况,进行均衡的分配数据节点。 locator分配算法的原理是,查询目前存在的所有locators,读取所有locators所分配的数据节点,并记录其使用次数。根据使用次数,对数据节点进行排序,使用次数少的
running = false } } } 生成Table1和Table2,并使用Join对Table1和Table2进行联合查询,打印输出结果。 object SqlJoinWithSocket { def main(args: Array[String]):
e.topic.enable = true”) 支持为已有主题增加分区 支持更新现有主题的配置 可以为分区级别和主题级别度量标准启用JMX查询 父主题: Kafka
hbase”,勾选“hbase:meta”的“执行”。 选择“待操作集群的名称 > Hive > Hive读写权限”,勾选“default”的 “查询”、“插入”、“建表”、“递归”。 编辑角色,在“配置资源权限”的表格中选择“待操作集群的名称 > Yarn > 调度队列 > root”
stream.context。 dstream.context是Streaming Context启动时从output Streams反向查找所依赖的DStream,逐个设置context。若Spark Streaming应用创建1个输入流,但该输入流无输出逻辑时,则不会给它设置
Colocation为locator分配数据节点的时候,locator的分配算法会根据已分配的情况,进行均衡的分配数据节点。 locator分配算法的原理是,查询目前存在的所有locators,读取所有locators所分配的数据节点,并记录其使用次数。根据使用次数,对数据节点进行排序,使用次数少的
Colocation为locator分配数据节点的时候,locator的分配算法会根据已分配的情况,进行均衡的分配数据节点。 locator分配算法的原理是,查询目前存在的所有locators,读取所有locators所分配的数据节点,并记录其使用次数。根据使用次数,对数据节点进行排序,使用次数少的
Colocation为locator分配数据节点的时候,locator的分配算法会根据已分配的情况,进行均衡的分配数据节点。 locator分配算法的原理是,查询目前存在的所有locators,读取所有locators所分配的数据节点,并记录其使用次数。根据使用次数,对数据节点进行排序,使用次数少的
Colocation为locator分配数据节点的时候,locator的分配算法会根据已分配的情况,进行均衡的分配数据节点。 locator分配算法的原理是,查询目前存在的所有locators,读取所有locators所分配的数据节点,并记录其使用次数。根据使用次数,对数据节点进行排序,使用次数少的
testuser; 对TABLE/VIEW进行赋权操作,执行如下命令,其中TABLE为要操作的表或视图名称,user为需要操作的角色。 对某数据库下的表赋予查询权限: GRANT SELECT ON TABLE TO user; 对某数据库下的表赋予写入权限: GRANT INSERT ON TABLE
stream.context。 dstream.context是Streaming Context启动时从output Streams反向查找所依赖的DStream,逐个设置context。如果Spark Streaming应用创建1个输入流,但该输入流无输出逻辑时,则不会给它设
testuser; 对TABLE/VIEW进行赋权操作,执行如下命令,其中TABLE为要操作的表或视图名称,user为需要操作的角色。 对某数据库下的表赋予查询权限: GRANT SELECT ON TABLE TO user; 对某数据库下的表赋予写入权限: GRANT INSERT ON TABLE
ton/,以此类推。 避免对同一张表同时进行读写操作 目前的版本中,Hive不支持并发操作,需要避免对同一张表同时进行读写操作,否则会出现查询结果不准确,甚至任务失败的情况。 分桶表不支持insert into 分桶表(bucket table)不支持insert into,仅支持insert
稀疏:表中为空(null)的列不占用存储空间。 MRS服务支持HBase组件的二级索引,支持为列值添加索引,提供使用原生的HBase接口的高性能基于列过滤查询的能力。 HBase结构 HBase集群由主备Master进程和多个RegionServer进程组成。如图1所示。 图1 HBase结构 表1
SparkPython:该类型作业将转换为SparkSubmit类型提交,MRS控制台界面的作业类型展示为SparkSubmit,通过接口查询作业列表信息时作业类型请选择SparkSubmit。 HiveScript HiveSql DistCp,导入、导出数据。 SparkScript