检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
配置服务访问授权 配置OBS访问授权 ModelArts Studio大模型开发平台使用对象存储服务(Object Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够顺利进行存储数据、训练模型等操作,需要用户配置访问OBS服务的权限。
路径。 其中,conversation_id参数为会话ID,唯一标识每个会话的标识符,可将会话ID设置为任意值,使用标准UUID格式。 图2 获取应用调用路径-2 使用Postman调用API 获取Token。参考《API参考》文档“如何调用REST API > 认证鉴权”章节获取Token。
径。 其中,conversation_id参数为会话ID,唯一标识每个会话的标识符,可将会话ID设置为任意值,使用标准UUID格式。 图2 获取工作流调用路径-2 使用Postman调用API 获取Token。参考《API参考》文档“如何调用REST API > 认证鉴权”章节获取Token。
参见状态码。 对于Pangu服务接口,如果调用后返回状态码为“200”,则表示请求成功。 响应消息头 对应请求消息头,响应同样也有消息头,如“Content-Type”。 响应消息体 响应消息体通常以结构化格式返回,与响应消息头中Content-Type对应,传递除响应消息头之外的内容。
NLP大模型支持人工评测与自动评测,在执行模型评测任务前,需创建评测数据集。 评测数据集的创建步骤与训练数据集一致,本章节仅做简单介绍,详细步骤请参见使用数据工程构建NLP大模型数据集。 登录ModelArts Studio平台,进入所需空间。 在左侧导航栏中选择“数据工程 > 数据获取”,单击界面右上角“创建导入任务”。
西南-贵阳一 Pangu-CV-ObjectDetection-N-2.1.0 2024年12月发布的版本,支持全量微调、在线推理。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同
来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同
拟合。 您可根据任务难度和数据规模进行调整。一般来说,如果目标任务的难度较大或数据量级很小,可以使用较大的训练轮数,反之可以使用较小的训练轮数。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 数据批量大小(batch_size)
0 2024年12月发布的版本,支持根据历史时间序列数据来预测未来的值,广泛应用于金融、销售预测、天气预报、能源消耗预测等领域。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同
先制定一个能够明确表达主题的提示词(若模型训练时包含相似任务,可参考模型训练使用的提示词),再由简至繁,逐步增加细节和说明。打好基础是后续提示词优化的前提,基础提示词生成效果差,优化只会事倍功半。 例如,文学创作类可以使用“请创作一个关于{故事主题}的故事”,邮件写作类可以使用“根据以下信息,写一封商务电子邮件。{邮
热身比例是指在模型训练初期逐渐增加学习率的过程。 由于训练初期模型的权重通常是随机初始化的,预测能力较弱,若直接使用较大的学习率,可能导致更新过快,进而影响收敛。为解决这一问题,通常在训练初期使用较小的学习率,并逐步增加,直到达到预设的最大学习率。通过这种方式,热身比例能够避免初期更新过快,从而帮助模型更好地收敛。
“训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到的
管理盘古数据资产 数据资产介绍 数据资产是指在平台中被纳入管理、存储并可供使用的数据集。 数据资产包含以下两种形式: 用户自行发布的数据集。 用户可以通过“数据工程 > 数据发布 > 数据流通”功能将数据集发布为数据资产。发布的数据集支持查看详细信息、编辑、删除以及发布至AI Gallery等操作。
点,最终输出翻译后的内容。 图1 试运行工作流-1 其他意图:用户其他的请求(除翻译请求外)将执行大模型节点分支,并根据用户的提问进行回答。 如图2,当用户输入对话类问题时(如“你好”),“意图识别”节点对用户的意图分类为“其他”,此时工作流将运行“大模型”节点分支,输出“大模型”节点的回答。
数据智算单元、数据通算单元按单元使用数量和时长后付费,时长精确到秒,数据托管单元按订购数量和时长预付费,提供1个月到1年供客户选择。 模型训练资源支持两种计费方式,包周期按订购数量和时长预付费,提供1个月到1年供客户选择;按需订购按单元使用数量和时长后付费,时长精确到秒。 模
建独立的工作空间。 每个工作空间在资产层面完全隔离,确保资产的安全性和操作的独立性,有效避免交叉干扰或权限错配带来的风险。用户可以结合实际使用场景,如不同的项目管理、部门运营或特定的研发需求,划分出多个工作空间,实现资产的精细化管理与有序调配,帮助用户高效地规划和分配任务,使团队协作更加高效。
根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,大模型的
的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如:
预览提示词效果 提示词撰写完成后,可以通过输入具体的变量值,组成完整的提示词,查看不同提示词在模型中的使用效果。 在撰写提示词页面,找到页面右侧变量输入区域,在输入框中输入具体的变量值信息。 输入变量值后预览区域会自动组装展示提示词。也可以直接选择已创建的变量集填入变量值信息,变
设置候选提示词 用户可以将效果较好的提示词设为候选提示词,并对提示词进行比对,以查看其效果。 每个工程任务下候选提示词上限9个,达到上限9个时需要删除其他候选提示词才能继续添加。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发 > 提示词工程