检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的热轧钢板表面缺陷标签准备图片数据。每个分类标签需
针对场景领域提供预训练模型,分类准确率高。 提供完善的文本处理能力,支持多种数据格式内容,适配不同场景的业务数据。 可根据使用过程中的反馈持续优化模型。 通用实体抽取工作流 功能介绍 支持自主上传文本数据,构建高精度实体抽取模型,适配不同行业场景的业务数据,快速获得定制服务。 适用场景 知识图谱、文本理解、智能问答、舆情分析等实体抽取场景。
应用开发套件 文字识别套件 自然语言处理套件 视觉套件 HiLens套件
Pro使用预置工作流部署服务后,可通过调用API和SDK调用已部署的在线服务。如果调用API失败,可根据返回的错误码及错误信息解决问题,具体的错误码说明请见表1。 表1 API调用指导 行业套件 调用API方法 错误码 文字识别套件 OCR_API参考 OCR错误码 自然语言处理套件 NLP_API参考
Browser+是一个比较常用的图形化工具,支持完善的桶管理和对象管理操作。推荐使用此工具创建桶或上传对象。obsutil是一款用于访问管理OBS的命令行工具,对于熟悉命令行程序的用户,obsutil是执行批量处理、自动化任务较好的选择。 如果您的业务环境需要通过API或SDK执
工作流简介 功能介绍 支持上传通用的图像分类数据,构建图像分类模型,快速、准确的对图像进行分类。 支持一键部署模型和技能到边缘设备Atlas 500,并在华为HiLens平台上进行模型管理和技能管理。 适用场景 通用图像分类场景。 优势 模型精度高,识别速度快;更新模型简便。 工作流流程
GiB”,适合纯CPU类型的负载运行的模型。 如果资源池选择专属资源池,勾选自己在ModelArts创建的专属资源池。 计算节点个数 设置当前版本模型的实例个数。如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置大于1,表示后台的计算模式为分布式的。请根据实际编码情况选择计算模式。
”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
只支持JPG、JPEG、PNG、BMP格式的图片,单张图片大小不能超过5MB,且单次上传的图片总大小不能超过8MB。 表1 PASCAL VOC格式说明 字段 是否必选 说明 folder 是 表示数据源所在目录。 filename 是 被标注文件的文件名。 size 是 表示图像的像素信息。 width:必选字段,图片的宽度。
是 被标注文件的文件名。 size 是 表示图像的像素信息。 width:必选字段,图片的宽度。 height:必选字段,图片的高度。 depth:必选字段,图片的通道数。 segmented 是 表示是否用于分割。 mask_source 否 表示图像分割保存的mask路径。 object
Browser+是一个比较常用的图形化工具,支持完善的桶管理和对象管理操作。推荐使用此工具创建桶或上传对象。obsutil是一款用于访问管理OBS的命令行工具,对于熟悉命令行程序的用户,obsutil是执行批量处理、自动化任务较好的选择。 如果您的业务环境需要通过API或SDK执
考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在“工业智能体控制台>工业AI开发>工业AI开发工作流”选择“通用图像分类工作流”新建应用,并训练模型,详情请见训练模型。
操作步骤 在“服务部署”页面,按表1填写服务的相关参数,然后单击“部署”。 图1 服务部署 表1 服务部署参数说明 参数 说明 服务名称 待部署的服务名称,单击可修改服务默认服务名称。 描述 待部署服务的简要说明。 资源池 用于服务部署的资源池和资源类型,可选“公共资源池”和“专属资源池”。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
相是指成分和组织均匀统一的物质部分,金属材料中,一般除了基体相外,还会存在许多的第二相。而第二相对整个金属材料的影响也是巨大的。在钢铁或其下游企业,常需要对钢铁显微成像的金相图片第二相面积含量进行测定。ModelArts Pro提供第二相面积含量测定工作流,能快速准确的返回第二相面积含量测定结果。
视觉套件 行业套件介绍 新建应用 零售商品识别工作流 热轧钢板表面缺陷检测工作流 云状识别工作流 刹车盘识别工作流 无监督车牌检测工作流 第二相面积含量测定工作流 通用图像分类工作流 更新应用版本 查看应用详情 监控应用 管理设备 删除应用
扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 如果分割效果不好,建议检测图片标注,标注质量的好坏直接影响模型训练图像分割效果的好坏。 根据数据量选择适当的学习率和训练轮次。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“无监督车牌检测工作流”新建应用,并训练模型,详情请见训练模型。