检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
String 系统提示信息。 执行成功时,字段可能为空。 执行失败时,用于显示错误码。 jobId String 执行该异步任务的jobId。 可以查询jobId查看任务执行状态、获取返回结果,详情参考Job管理API。 响应示例 状态码: 200 成功响应示例 Http Status Code:
PageRank算法。该算法继承了经典PageRank算法的思想,利用图链接结构来递归计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点,因此可以
基本概念 点 图数据模型中的点代表实体。如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 边 图数据模型中的边代表关系。如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 Gremlin Gremlin是Apache
根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。 如果一个PageRank值很高的网页链接到其他网页,那么被链接到的网页的PageRank值会相应地提高。
String 新增数据的元数据文件OBS路径。 logDir 否 String 导入图日志存放目录,用于存储导入失败的数据和详细错误原因。 parallelEdge 否 Object 重复边处理。 action 否 String 处理方式,取值为override,表示覆盖之前的重复边。 ignoreLabel
关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。 参数说明 表1 关联预测算法(Link Prediction)参数说明
sources 否 查询的起始节点ID集合 String - 标准csv格式,ID之间以英文逗号分隔,例如:["Alice","Nana"] n 否 枚举的满足过滤条件的圈的个数的上限 Integer [1,100000] 100 statistics 否 是否输出所有满足过滤条件的圈的个数 Boolean
子图匹配(Subgraph Matching) 概述 子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。 适用场景 子图匹配(subgraph matching)算法适用于社交网络分析、
allow。 allow表示允许重复边。 ignore表示忽略之后的重复边。 override表示覆盖之前的重复边。 图规格为(持久化版)的图暂不支持该参数。 ignoreLabel 否 Boolean 重复边的定义,是否忽略Label。取值为true或者false,默认取true。
建议在使用图期间,不要删除存储在OBS中的数据。 导入目录下的单文件或者导入的单文件大小不能超过5GB,如果超过5GB,则会导入失败,建议把文件拆成小于5GB的多个文件后再导入。 单次导入的文件总大小(包括点、边数据集)不能超过可用内存的1/5。可用内存参考运维监控看板>节点监控
需要同时添加两个索引(点label索引和边label索引)才能正常使用Cypher查询。 如果图中已经存在hasLabel为true, indexProperty为空的点索引或边索引,则不需要重复构建。 添加索引API为异步接口,查询索引是否添加成功,请使用查询Job状态API。 细粒度权限开启时使用子账号创建
供电管理图模板 操作场景1:供电范围查询。 包含的子操作: 查找位于变电站中的母线。 查找某根母线的供电范围。 查找某根母线供电范围内的用户点。 操作步骤:您只需要单击运行键,如有弹框,在弹框内选择母线值,运行后即可在画布显示效果图。 操作场景2:停电故障分析。 包含的子操作: 从停电用户点回溯定位故障点。
edge:所有边,仅第一层filter可用,使用方式与vertex类似 后一层的查询操作以前一层的查询结果为输入: 若前一层的结果是点,则对应的操作可以有(inV,outV,bothV,in,out,both)。 若前一层的结果是边,则对应的操作可以有(inV,outV,bothV)。 vertex_filter
Count)适用于衡量图的结构特性场景。 参数说明 参数 是否必选 说明 类型 取值范围 statistics 否 是否仅输出总的统计量结果: true:仅输出总的统计数量。 false:输出各点对应三角形数量。 Boolean true或false,默认为true。 使用说明 不考虑边的方向以及多边情况。
Correlation)计算所有边上起点和终点度数之间的Pearson关联系数,常用来表示图中高度数节点是否和高度数节点相连。 适用场景 度数关联度算法(Degree Correlation)适用于衡量图的结构特性场景。 参数说明 无。 示例 单击运行,计算图的度数关联度,JSON结果会展示在查询结果区。 父主题:
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
关联路径算法(n-Paths)用于寻找图中两节点之间在层关系内的n条路径。 适用场景 关联路径算法(n-Paths)适用于关系分析、路径设计、网络规划等场景。 参数说明 表1 关联路径算法(n-Paths)参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 输入路径的起点ID String -
OBS对象名约束 图引擎服务支持的OBS对象名支持以下字符: 字母数字字符 0-9 a-z A-Z 特殊字符 ! - _ . * ' ( ) 中文 \u4e00-\u9fa5 暂不支持的字符有: 特殊字符 \ { ^ } % ` ] " > [ ~ < # | & @ : , $
紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness Centrality”越大,其在所在图中的位置越靠近中心。 适用场景 紧密中心度算法(Closeness
Neighbors)是一种常用的基本图分析算法,可以得到两个节点所共有的邻居节点,直观地发现社交场合中的共同好友、以及在消费领域共同感兴趣的商品,进一步推测两个节点之间的潜在关系和相近程度。 适用场景 共同邻居算法(Common Neighbors)适用于电商、社交等多领域的推荐场景。 参数说明