检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
911-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud && unzip ./AscendCloud/AscendCloud-LLM-*.zip -d ./Asce
在模型广场查看模型 在模型广场页面,ModelArts Studio大模型即服务平台提供了丰富的开源大模型,在模型详情页可以查看模型的详细介绍,根据这些信息选择合适的模型进行训练、推理,接入到企业解决方案中。 访问模型广场 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts
ModelArts在线服务预测时,如何提高预测速度? 部署在线服务时,您可以选择性能更好的“实例规格”提高预测速度。例如使用GPU资源代替CPU资源。 部署在线服务时,您可以增加“实例数”。 如果实例数设置为1,表示后台的计算模式是单机模式;如果实例数设置大于1,表示后台的计算模
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
x86_x64架构的主机为例,您可以购买相同规格的ECS或者应用本地已有的主机进行自定义镜像的制作。 购买ECS服务器的具体操作请参考购买并登录弹性云服务器。镜像选择公共镜像,推荐使用ubuntu18.04的镜像。 图1 创建ECS服务器-选择X86架构的公共镜像 登录主机后,安装D
推理精度测试 本章节介绍如何进行推理精度测试,建议在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。若需要在生产环境中进行推理精度测试,请通过调用接口的方式进行测试。 Step1 执行精度测试 精度测试需要数据集进行测试。推荐公共数据集mmlu
910-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud && unzip ./AscendCloud/AscendCloud-LLM-*.zip -d ./Asce
909-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud && unzip ./AscendCloud/AscendCloud-LLM-*.zip -d ./Asce
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
“S3_USE_HTTPS=1” 表5 PIP源和API网关地址环境变量 变量名 说明 示例 MA_PIP_HOST PIP源域名。 “MA_PIP_HOST=repo.myhuaweicloud.com” MA_PIP_URL PIP源地址。 “MA_PIP_URL=http://repo
执行如下命令分别切换到对应环境查看是否有ipykernel包。 conda activate base # base替换为实际使用的python环境 pip show ipykernel 对应conda环境没有ipykernel,直接在Notebook中添加自定义IPython Kernel安装。
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
onda/bin/pip”进行安装,不要使用默认的anaconda(kernel依赖的python环境)的pip进行安装。 使用命令jupyter labextension list --app-dir=/home/ma-user/.lab/console查询 前端插件安装目录为:/home/ma-user/
912-xxx.zip,并直接进入到llm_train/AscendFactory文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud && unzip ./AscendCloud/AscendCloud-LLM-*.zip -d ./Asc
服务部署、启动、升级和修改时,容器健康检查失败如何处理? 问题现象 服务部署、启动、升级和修改时,容器健康检查失败。 原因分析 容器提供的健康检查接口调用失败。容器健康检查接口调用失败,原因可能有两种: 镜像健康检查配置问题 模型健康检查配置问题 解决方法 根据容器日志进行排查,查看健康检查接口失败的具体原因。
解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipeline-model-paralle
解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipeline-model-paralle
解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipeline-model-parallel-size),可以尝试增加